首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   618篇
  免费   22篇
  国内免费   4篇
化学   363篇
晶体学   1篇
力学   52篇
数学   120篇
物理学   108篇
  2023年   7篇
  2022年   29篇
  2021年   24篇
  2020年   10篇
  2019年   23篇
  2018年   15篇
  2017年   11篇
  2016年   30篇
  2015年   29篇
  2014年   19篇
  2013年   39篇
  2012年   41篇
  2011年   50篇
  2010年   24篇
  2009年   26篇
  2008年   51篇
  2007年   43篇
  2006年   38篇
  2005年   32篇
  2004年   25篇
  2003年   15篇
  2002年   15篇
  2001年   6篇
  2000年   6篇
  1999年   2篇
  1998年   7篇
  1997年   7篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1984年   2篇
  1981年   1篇
  1979年   1篇
排序方式: 共有644条查询结果,搜索用时 15 毫秒
11.
Chemical modification of proteins is enormously useful for characterizing protein function in complex biological systems and for drug development. Selective labeling of native or endogenous proteins is challenging owing to the existence of distinct functional groups in proteins and in living systems. Chemistry for rapid and selective labeling of proteins remains in high demand. Here we have developed novel affinity labeling probes using benzotriazole (BTA) chemistry. We showed that affinity-based BTA probes selectively and covalently label a lysine residue in the vicinity of the ligand binding site of a target protein with a reaction half-time of 28 s. The reaction rate constant is comparable to the fastest biorthogonal chemistry. This approach was used to selectively label different cytosolic and membrane proteins in vitro and in live cells. BTA chemistry could be widely useful for labeling of native/endogenous proteins, target identification and development of covalent inhibitors.

Affinity-based benzotriazole (BTA) probes selectively and covalently label native proteins or endogenous proteins in cells with a fast reaction rate. It is enormously useful for characterizing protein function in biological systems and for drug development.  相似文献   
12.
The development of effective thermally conductive rubber nanocomposites for heat management represents a tricky point for several modern technologies, ranging from electronic devices to the tire industry. Since rubber materials generally exhibit poor thermal transfer, the addition of high loadings of different carbon-based or inorganic thermally conductive fillers is mandatory to achieve satisfactory heat dissipation performance. However, this dramatically alters the mechanical behavior of the final materials, representing a real limitation to their application. Moreover, upon fillers’ incorporation into the polymer matrix, interfacial thermal resistance arises due to differences between the phonon spectra and scattering at the hybrid interface between the phases. Thus, a suitable filler functionalization is required to avoid discontinuities in the thermal transfer. In this challenging scenario, the present review aims at summarizing the most recent efforts to improve the thermal conductivity of rubber nanocomposites by exploiting, in particular, inorganic and hybrid filler systems, focusing on those that may guarantee a viable transfer of lab-scale formulations to technological applicable solutions. The intrinsic relationship among the filler’s loading, structure, morphology, and interfacial features and the heat transfer in the rubber matrix will be explored in depth, with the ambition of providing some methodological tools for a more profitable design of thermally conductive rubber nanocomposites, especially those for the formulation of tires.  相似文献   
13.
The coil/helix transition of a synthetic, branched-chain polymeric polypeptide (poly (Lys(Glu(1)-DL-Ala(3))EAK), 50-Lys residues long in the backbone, as a function of increasing molarities of methanol in solution, is here studied by both, circular dichroism (CD) and capillary zone electrophoresis. CD spectra showed that, at 75% v/v methanol, the transition from random coil to fully helical structure was obtained, in a pH 1.1 HCI solution in the presence of 20 mM NaCI. CZE studies, run in parallel, exhibited the classical unfolding to folding sigmoidal transition, with mid-point at 60% v/v methanol concentration, plateauing at ca. 80% v/v organic solvent. Surprisingly, though, such unfolding to folding transition was accompanied by an expansion, rather than a contraction, of the resulting ordered polypeptide. As the charge of the polypeptide (a pure polycation at a pH of 2.1 in CZE) was kept rigorously constant, a plot of the radius of the polymer along the sigmoidal transition clearly showed that the radius of gyration of the helical, structured polypeptide was in fact larger than that of the random coil. Such results were confirmed by molecular dynamics simulations, which indicated that the dimensions of such polypeptide, in alpha-helix configuration, were 8.5 nm (in length) and 3.2 nm (in diameter), whereas those of the corresponding random coil were 7.2 nm (in length) and 5.1 nm (length of shorter axis). It would thus appear that the randomized structure assumes the shape of a more compact object, roughly resembling a "rugby ball".  相似文献   
14.
15.
16.
The reactions of 4,5,6,7‐tetrathiocino‐[1,2‐b:3,4‐b′]‐1,3,8,10‐tetrasubstituted‐diimidazolyl‐2,9‐dithiones (R2,R′2‐todit; 1 : R=R′=Et; 2 : R=R′=Ph; 3 : R=Et, R′=Ph) with Br2 exclusively afforded 1:1 and 1:2 “T‐shaped” adducts, as established by FT‐Raman spectroscopy and single‐crystal X‐ray diffraction in the case of complex 1? 2 Br2. On the other hand, the reactions of compounds 1 – 3 with molecular I2 provided charge‐transfer (CT) “spoke” adducts, among which the solvated species 3? 2 I2 ? (1?x)I2 ? x CH2Cl2 (x=0.94) and ( 3 )2 ? 7 I2 ? x CH2Cl2, (x=0.66) were structurally characterized. The nature of all of the reaction products was elucidated based on elemental analysis and FT‐Raman spectroscopy and supported by theoretical calculations at the DFT level.  相似文献   
17.
We describe an approach using ring‐closing metathesis (RCM) to synthesize versatile coumarin derivatives that present appropriate substitutions both at the aromatic and at the α,β‐unsaturated lactone ring. The obtained compounds can be used as molecular scaffolds suitable for further diversifications through a combinatorial approach.  相似文献   
18.
Pure, 5 at%, and 10 at% Ta- or Nb-doped TiO2 nanosized powders were prepared by the sol-gel method. The powders heated to 400°C have the crystalline anatase structure. While the pure TiO2 powder heated to 850°C has the rutile structure, the addition of Ta and Nb inhibited the anatase-to-rutile phase transformation at this temperature. Ta was soluble in the titania lattice up to the concentration of 10 at%, while the solubility of Nb was 5 at%. Thick films were fabricated with these powders by screen printing technology and then fired at 650°C and 850°C for 1 h. SEM observations showed that the anatase-to-rutile phase transformation induces a grain growth of about one order of magnitude for pure TiO2. The addition of Ta and Nb is effective to keep the TiO2 grain size at the nanometric level even at 850°C. Conductance measurements showed that a good gas response is observed only for the nanostructured titania-based films. The CO response of these materials is only slightly affected by humidity.  相似文献   
19.
Catalytic oxidation of secondary amines to nitrones using alkyl hydroperoxides as primary oxidant has been demonstrated for the first time. The titanium alkoxide catalyst is protected from co-product water by the combined use of a tightly binding trialkanolamine ligand and molecular sieves. Nitrones can be obtained in high yield (up to 98%) under homogeneous, anhydrous conditions and even in the absence of solvent. The reactions are fast (2-7 h) and good selectivity can be achieved with as little as 1% catalyst.  相似文献   
20.
The conformational study of a new group of synthetic peptides containing 4-amino-1,2-dithiolane-4-carboxylic acid (Adt), a cysteine-related achiral residue, has been carried out through a joint application of computational and experimental methodologies. Molecular Dynamics simulations clearly suggest the tendency of this molecule to adopt a gamma-turn conformation in vacuum and help in analyzing the complex and crucial conformational behaviour of the dithiolane ring which appears to preferentially adopt a C(S)-like structure. Electronic structure calculations carried out in solution using the Density Functional Theory also indicate the preservation of the gamma-like folding in apolar solvents and the helix-like one in more polar solvents. A comparison with the achiral 1-aminocycloalkane-1-carboxylic acid (Ac5c) has been carried out using the same computational tools. NMR and IR data on dipeptide derivatives containing the Adt or Ac5c residue show that in chloroform solution all the models prefer a gamma-turn structure, centered at the cyclic residue, stabilized by an intramolecular H-bond, whereas in a more polar solvent, i.e. dimethyl sulfoxide, this folding is not maintained. The experimental conformational studies, extended to N-Boc protected tripeptides, clearly indicate the remarkable tendency of both the five-membered C(alpha)-tetrasubstituted cyclic amino acids Adt and Ac5c to induce the gamma-turn structure also in models able to adopt the beta-bend conformation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号