首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   1篇
化学   31篇
力学   1篇
物理学   4篇
  2021年   2篇
  2020年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2012年   2篇
  2011年   4篇
  2010年   2篇
  2008年   4篇
  2007年   4篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
排序方式: 共有36条查询结果,搜索用时 31 毫秒
21.
We present an algorithm to reconstruct atomistic structures from their corresponding coarse‐grained (CG) representations and its implementation into the freely available molecular dynamics (MD) program package GROMACS. The central part of the algorithm is a simulated annealing MD simulation in which the CG and atomistic structures are coupled via restraints. A number of examples demonstrate the application of the reconstruction procedure to obtain low‐energy atomistic structural ensembles from their CG counterparts. We reconstructed individual molecules in vacuo (NCQ tripeptide, dipalmitoylphosphatidylcholine, and cholesterol), bulk water, and a WALP transmembrane peptide embedded in a solvated lipid bilayer. The first examples serve to optimize the parameters for the reconstruction procedure, whereas the latter examples illustrate the applicability to condensed‐phase biomolecular systems. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   
22.
23.
24.
Many integral membrane proteins assemble to form oligomeric structures in biological membranes. In particular, seven-transmembrane helical G protein-coupled receptors (GPCRs) appear to self-assemble constitutively in membranes, but the mechanism and physiological role of this assembly are unknown. We developed and employed coarse-grain molecular dynamics (CGMD) models to investigate the molecular basis of how the physicochemical properties of the phospholipid bilayer membrane affect self-assembly of visual rhodopsin, a prototypical GPCR. The CGMD method is a mesoscopic simulation technique in which groups of atoms are mapped to particles on the basis of a four-to-one rule. This systematic reduction of the degrees of freedom allows for computationally efficient calculation of the structure and dynamics of molecular assemblies for larger time and length scales than accessible to atomistic models, providing here an unprecedented view of spontaneous protein assembly in biomembranes. Systems with up to 16 rhodopsin molecules at a protein-to-lipid ratio of 1:100 were simulated for time scales of up to 8 micros. The results obtained for four different phospholipid environments showed that localized adaptation of the membrane bilayer to the presence of receptors is reproducibly most pronounced near transmembrane helices 2, 4, and 7. This local membrane deformation appears to be a key factor defining the rate, extent, and orientational preference of protein-protein association. The implications of our findings are discussed within a framework of a generalized mechanism of membrane protein self-assembly.  相似文献   
25.
Fusion peptides are moderately hydrophobic segments of viral and nonviral membrane fusion proteins that enable these proteins to fuse two closely apposed biological membranes. In vitro assays furthermore show that even isolated fusion peptides alone can support membrane fusion in model systems. In addition, the fusion peptides have a distinct effect on the phase diagram of lipid mixtures. Here, we present molecular dynamics simulations investigating the effect of a particular fusion peptide, the influenza hemagglutinin fusion peptide and some of its mutants, on the lipid phase diagram. We detect a systematic shift toward phases with more positive mean curvature in the presence of the peptides, as well as an occurrence of bicontinuous cubic phases, which indicates a stabilization of Gaussian curvature. The wild-type fusion peptide has a stronger effect on the phase behavior as compared to the mutants, which we relate to its boomerang shape. Our results point to a different role of fusion peptides than hitherto assumed, the stabilization of pores rather than stalks along the fusion pathway.  相似文献   
26.
The invasion percolation model is used to investigate the effect of correlated heterogeneity on capillary dominated displacements in porous media. The breakthrough and residual saturations are shown to be strongly influenced by the correlations. Correlated heterogeneity leads to lower residual saturations than those observed in random systems and the scatter commonly observed in laboratory core measurements of the residual saturations can be attributed to the presence of such heterogeneity at the pore scale. Invasion percolation computations on elongated lattices, those with a geometry of L d–1 × nL where n denotes the aspect ratio, show that residual saturations for systems with correlated heterogeneity exhibit a strong dependence on aspect ratio. This effect is not considered by experimentalists who advocate the use of long (high aspect ratio) cores in order to overcome end-effects in experiments on shorter cores. A new scaling law is proposed for the residual saturations in elongated systems with correlated heterogeneity, and is confirmed by numerical simulations.  相似文献   
27.
Molecular dynamics simulations have been used to study the phase behavior of a dipalmitoylphosphatidylcholine (DPPC)/palmitic acid (PA)/water 1:2:20 mixture in atomic detail. Starting from a random solution of DPPC and PA in water, the system adopts either a gel phase at temperatures below approximately 330 K or an inverted hexagonal phase above approximately 330 K in good agreement with experiment. It has also been possible to observe the direct transformation from a gel to an inverted hexagonal phase at elevated temperature (approximately 390 K). During this transformation, a metastable fluid lamellar intermediate is observed. Interlamellar connections or stalks form spontaneously on a nanosecond time scale and subsequently elongate, leading to the formation of an inverted hexagonal phase. This work opens the possibility of studying in detail how the formation of nonlamellar phases is affected by lipid composition and (fusion) peptides and, thus, is an important step toward understanding related biological processes, such as membrane fusion.  相似文献   
28.
We describe computer simulations of pore formation and membrane rupture of phospholipid bilayers under mechanical and electrical stress. On the nanosecond simulation time scale, pores are induced by a lateral pressure exceeding -200 bar or by an applied electric field of 0.5 V/nm.  相似文献   
29.
We calculated the pressure-area isotherm of a dipalmitoyl-phosphatidylcholine (DPPC) lipid monolayer from molecular dynamics simulations using a coarse-grained molecular model. We characterized the monolayer structure, geometry, and phases directly from the simulations and compared the calculated isotherm to experiments. The calculated isotherm shows liquid-expanded and liquid-condensed phases and their coexistence plateau. At high pressure, the monolayer surface is rippled; upon further compression, the monolayer undergoes a collapse. We studied the effect of temperature and system size on the isotherm slope and phase coexistence region. Thermodynamic and dynamic properties of the monolayer phases were also investigated.  相似文献   
30.
The MARTINI force field: coarse grained model for biomolecular simulations   总被引:4,自引:0,他引:4  
We present an improved and extended version of our coarse grained lipid model. The new version, coined the MARTINI force field, is parametrized in a systematic way, based on the reproduction of partitioning free energies between polar and apolar phases of a large number of chemical compounds. To reproduce the free energies of these chemical building blocks, the number of possible interaction levels of the coarse-grained sites has increased compared to those of the previous model. Application of the new model to lipid bilayers shows an improved behavior in terms of the stress profile across the bilayer and the tendency to form pores. An extension of the force field now also allows the simulation of planar (ring) compounds, including sterols. Application to a bilayer/cholesterol system at various concentrations shows the typical cholesterol condensation effect similar to that observed in all atom representations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号