首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4983篇
  免费   242篇
  国内免费   33篇
化学   3584篇
晶体学   17篇
力学   123篇
数学   865篇
物理学   669篇
  2023年   41篇
  2022年   41篇
  2021年   91篇
  2020年   116篇
  2019年   110篇
  2018年   68篇
  2017年   55篇
  2016年   154篇
  2015年   139篇
  2014年   177篇
  2013年   277篇
  2012年   312篇
  2011年   358篇
  2010年   252篇
  2009年   199篇
  2008年   313篇
  2007年   314篇
  2006年   301篇
  2005年   300篇
  2004年   236篇
  2003年   207篇
  2002年   212篇
  2001年   82篇
  2000年   69篇
  1999年   70篇
  1998年   59篇
  1997年   64篇
  1996年   69篇
  1995年   44篇
  1994年   38篇
  1993年   23篇
  1992年   19篇
  1991年   31篇
  1990年   19篇
  1989年   30篇
  1988年   18篇
  1986年   19篇
  1985年   28篇
  1984年   30篇
  1983年   27篇
  1982年   33篇
  1981年   23篇
  1980年   25篇
  1979年   18篇
  1978年   33篇
  1977年   20篇
  1976年   15篇
  1975年   12篇
  1974年   18篇
  1973年   10篇
排序方式: 共有5258条查询结果,搜索用时 296 毫秒
231.
Mutasynthesis of pyrichalasin H from Magnaporthe grisea NI980 yielded a series of unprecedented 4′-substituted cytochalasin analogues in titres as high as the wild-type system (≈60 mg L−1). Halogenated, O-alkyl, O-allyl and O-propargyl examples were formed, as well as a 4′-azido analogue. 4′-O-Propargyl and 4′-azido analogues reacted smoothly in Huisgen cycloaddition reactions, whereas p-Br and p-I compounds reacted in Pd-catalysed cross-coupling reactions. A series of examples of biotin-linked, dye-linked and dimeric cytochalasins was rapidly created. In vitro and in vivo bioassays of these compounds showed that the 4′-halogenated and azido derivatives retained their cytotoxicity and antifungal activities; but a unique 4′-amino analogue was inactive. Attachment of larger substituents attenuated the bioactivities. In vivo actin-binding studies with adherent mammalian cells showed that actin remains the likely intracellular target. Dye-linked compounds revealed visualisation of intracellular actin structures even in the absence of phalloidin, thus constituting a potential new class of actin-visualisation tools with filament-barbed end-binding specificity.  相似文献   
232.
Single chemical entities with potential to simultaneously interact with two binding sites are emerging strategies in medicinal chemistry. We have designed, synthesized and functionally characterized the first bitopic ligands for the CB2 receptor. These compounds selectively target CB2 versus CB1 receptors. Their binding mode was studied by molecular dynamic simulations and site-directed mutagenesis.  相似文献   
233.
A polyolefin with certified biocompatibility according to USP class VI was used by our group as feedstock for filament-based 3D printing to meet the highest medical standards in order to print personal protective equipment for our university hospital during the ongoing pandemic. Besides the chemical resistance and durability, as well as the ability to withstand steam sterilization, this polypropylene (PP) copolymer is characterized by its high purity, as achieved by highly efficient and selective catalytic polymerization. As the PP copolymer is suited to be printed with all common printers in fused filament fabrication (FFF), it offers an eco-friendly cost–benefit ratio, even for large-scale production. In addition, a digital workflow was established focusing on common desktop FFF printers in the medical sector. It comprises the simulation-based optimization of personalized print objects, considering the inherent material properties such as warping tendency, through to validation of the process chain by 3D scanning, sterilization, and biocompatibility analysis of the printed part. This combination of digital data processing and 3D printing with a sustainable and medically certified material showed great promise in establishing decentralized additive manufacturing in everyday hospital life to meet peaks in demand, supply bottlenecks, and enhanced personalized patient treatment.  相似文献   
234.
Developing methodologies for on‐demand control of the release of a molecular guest requires the rational design of stimuli‐responsive hosts with functional cavities. While a substantial number of responsive metallacages have already been described, the case of coordination‐tweezers has been less explored. Herein, we report the first example of a redox‐triggered guest release from a metalla‐assembled tweezer. This tweezer incorporates two redox‐active panels constructed from the electron‐rich 9‐(1,3‐dithiol‐2‐ylidene)fluorene unit that are facing each other. It dimerizes spontaneously in solution and the resulting interpenetrated supramolecular structure can dissociate in the presence of an electron‐poor planar unit, forming a 1:1 host–guest complex. This complex dissociates upon tweezer oxidation/dimerization, offering an original redox‐triggered molecular delivery pathway.  相似文献   
235.
The design of covalent adaptable networks (CANs) relies on the ability to trigger the rearrangement of bonds within a polymer network. Simple activated alkynes are now used as versatile reversible cross‐linkers for thiols. The click‐like thiol–yne cross‐linking reaction readily enables network synthesis from polythiols through a double Michael addition with a reversible and tunable second addition step. The resulting thioacetal cross‐linking moieties are robust but dynamic linkages. A series of different activated alkynes have been synthesized and systematically probed for their ability to produce dynamic thioacetal linkages, both in kinetic studies of small molecule models, as well as in stress relaxation and creep measurements on thiol–yne‐based CANs. The results are further rationalized by DFT calculations, showing that the bond exchange rates can be significantly influenced by the choice of the activated alkyne cross‐linker.  相似文献   
236.
237.
Compared to the biological world's rich chemistry for functionalizing carbon, enzymatic transformations of the heavier homologue silicon are rare. We report that a wild‐type cytochrome P450 monooxygenase (P450BM3 from Bacillus megaterium, CYP102A1) has promiscuous activity for oxidation of hydrosilanes to give silanols. Directed evolution was applied to enhance this non‐native activity and create a highly efficient catalyst for selective silane oxidation under mild conditions with oxygen as the terminal oxidant. The evolved enzyme leaves C?H bonds present in the silane substrates untouched, and this biotransformation does not lead to disiloxane formation, a common problem in silanol syntheses. Computational studies reveal that catalysis proceeds through hydrogen atom abstraction followed by radical rebound, as observed in the native C?H hydroxylation mechanism of the P450 enzyme. This enzymatic silane oxidation extends nature's impressive catalytic repertoire.  相似文献   
238.
Oxyallyl derivatives are typically elusive compounds. Even recently reported “stabilized” 1,3‐diaminooxyallyl species are still highly reactive and have short lifetimes at room temperature. Herein, we report the synthesis and preliminary study of mesoionic pyrimidine derivatives that feature 1,3‐bis(dimethylamino)oxyallyl patterns with an unprecedented level of stabilization. The latter are not only insensitive towards air and moisture, but they are also compatible with the formation of an ancillary stable N‐heterocyclic carbene moiety. As the oxyallyl pattern is proton‐responsive, it allows the reversible switching of the electronic properties of the carbene, as a ligand.  相似文献   
239.
This review is the sequel to the 2000 report on the recent advances in the chemistry of odorants and it summarizes the developments in fragrance chemistry over the past 20 years. Following the olfactory spectrum set out in that report, trendsetting so‐called captive odorants (patent‐protected ingredients unavailable to the market) are presented according to the main odor families: “fruity”, “marine”, “green”, “floral”, “spicy”, “woody”, “amber”, and “musky”. The design of odorants, their chemical synthesis, and their use in modern perfumery are illustrated with prominent examples. Featured are new fruity odorants that provide signature in the top note, as well as precursor technology. In the green domain, focus is on leafy notes and green pear. New benzodioxepines and benzodioxoles have modernized the marine family and required a revision of the existing olfactophore models. The replacement of Lilial and Lyral kept the industry busy in the floral domain with a plethora of new “muguets”. There was continued activity in the domain of rose odorants, especially in the area of rose ketones. Biotechnology became significant, for example, with Clearwood and Ambrofix, and the principal odorants of vetiver oil in the woody family have been found. Fourth and fifth families of musk odorants were also discovered and populated. Thus, new avenues for further explorations into fragrance chemistry have been opened.  相似文献   
240.
Starch nanoparticle (SNP)‐based pressure sensitive adhesives (PSAs) with core‐shell particle morphology (starch nanoparticle core/acrylic polymer shell) are produced via seeded, semi‐batch emulsion polymerization at 15 wt% SNP loading (relative to total polymer weight) and 40 wt% latex solids. Crosslinker and chain transfer agent (CTA) are introduced to the acrylic shell polymer formulation at a range of concentrations according to a 32 factorial design to tailor the latex and adhesive properties of SNP‐based latexes. The crosslinker and CTA show no significant effect on polymerization kinetics, particle size, and viscosity. Latex gel content is predicted using an empirical model, which is a function of crosslinker and CTA concentration. Both the gel content and glass transition temperature strongly affect the adhesive properties (tack, peel strength, and shear strength) of the SNP‐based latex films. 3D response surfaces for the adhesive properties are constructed to facilitate the design of SNP‐based PSAs with desired properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号