首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   894篇
  免费   33篇
  国内免费   3篇
化学   555篇
晶体学   5篇
力学   37篇
数学   99篇
物理学   234篇
  2023年   9篇
  2022年   20篇
  2021年   22篇
  2020年   29篇
  2019年   34篇
  2018年   38篇
  2017年   25篇
  2016年   45篇
  2015年   30篇
  2014年   51篇
  2013年   88篇
  2012年   57篇
  2011年   72篇
  2010年   36篇
  2009年   50篇
  2008年   47篇
  2007年   36篇
  2006年   26篇
  2005年   19篇
  2004年   20篇
  2003年   5篇
  2002年   12篇
  2001年   5篇
  2000年   3篇
  1999年   3篇
  1998年   3篇
  1996年   11篇
  1995年   3篇
  1993年   7篇
  1992年   7篇
  1991年   4篇
  1990年   5篇
  1989年   3篇
  1988年   4篇
  1987年   4篇
  1986年   10篇
  1985年   6篇
  1984年   6篇
  1983年   4篇
  1981年   4篇
  1980年   4篇
  1979年   3篇
  1978年   4篇
  1977年   4篇
  1976年   3篇
  1975年   3篇
  1974年   6篇
  1965年   3篇
  1957年   4篇
  1944年   4篇
排序方式: 共有930条查询结果,搜索用时 15 毫秒
21.
Abstract

Wound healing is a complex process and it involves restoration of damaged skin tissues. Several wound dressings comprising naturally made substances are constantly investigated to assist wound healing. In this research, a new wound dressing based on polyurethane (PU) supplemented with essence of Channa striatus (CS) fish oil was made by electrospinning. Morphological study depicted the reduction in fiber diameter than PU with the addition of fish oil (0.552?±?0.109?μm for 8:1 v/v% and 0.519?±?0.196?μm 7:2 v/v%) than the pristine PU (0.971?±?0.205?µm). Fourier transform infrared spectroscopy (FTIR) analysis revealed the presence of fish oil in the composite as identified through increasing peak intensity. Fish oil resulted in the hydrophilic behavior (88?±?3 (8:1 v/v) and 70?±?6 (7:2 v/v)) as revealed in the contact angle analysis. Thermal gravimetric analysis (TGA) showed the superior thermal behavior of the wound dressing patch compared to the PU. Atomic force microscopy (AFM) analysis insinuated a decrease in the surface roughness of the pristine polyurethane with the added fish oil. Coagulation assays signified the delay in the blood clotting time portraying its anti-thrombogenic behavior. Hemolytic assay revealed the less toxic nature of the developed nanocomposites with the red blood cells (RBC’s) depicting its safety with blood. Hence, polyurethane nanofibers supplemented with fish oil made them as deserving candidates for wound dressing application.  相似文献   
22.
A new disposable sensitive voltammetric sensor for the determination of Fe(III) based on a graphene (G) and piroxicam (Pir) modified screen printed carbon electrode (Pir/G/SPCE) has been developed. The developed method is based on accumulation of Fe(III) on the surface of the prepared sensor strip, formation a complex with Pir and subsequent reduction the adsorbed chelated Fe(III) at ?0.03 V (vs. Ag/AgCl) coupled with the catalytic enhancement of bromate. Characterizations of the modified electrode surface were performed by field emission scanning electron microscopy (FE‐SEM), energy dispersive X‐ray spectroscopy (EDX) and electrochemical impedance spectroscopy (EIS). Electrochemical behavior of the modified SPCEs was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Under the optimum conditions, the catalytic voltammetric method exhibited linear calibration plot in the concentration ranges of 1–100 ng mL?1 and 100–3500 ng mL?1 Fe(III) with a limit of detection of 0.3 ng mL?1. The sensor strip displayed good reproducibility with 1.7 % relative standard deviation (RSD%). The developed method was successfully applied for the determination of iron in food samples such as vegetables, fruit, and cereal.  相似文献   
23.
24.
A new approach was developed for modeling the effect of the third body on fretting. This was accomplished using the combined finite-discrete element method (FDEM) in which the third body is analyzed as discrete elements while the first bodies are modeled using finite elements. This approach provides a link between large scale models which treat the mass of wear debris as a single or small number of bodies and small scale models which only study a control volume. The FDEM was used to analyze the behavior of third body particles between flat sliding surfaces. When the third body mass is composed of unconnected particles, it behaves as a Newtonian fluid, but this behavior ceases when the particles are connected into platelets. The FDEM was also used to study the behavior of third body particles inside a Hertzian line contact. As the number of particles and platelet size increase the load carried by the worn slip zone grows larger in relationship to the unworn stick zone.  相似文献   
25.
Marine drugs are abundant in number, comprise of a diverse range of structures with corresponding mechanisms of action, and hold promise for the discovery of new and better treatment approaches for the management of several chronic diseases. There are huge reserves of natural marine biological compounds, as 70 percent of the Earth is covered with oceans, indicating a diversity of chemical entities on the planet. The marine ecosystems are a rich source of bioactive products and have been explored for lead drug molecules that have proven to be novel therapeutic targets. Over the last 70 years, many structurally diverse drug products and their secondary metabolites have been isolated from marine sources. The drugs obtained from marine sources have displayed an exceptional potential in the management of a wide array of diseases, ranging from acute to chronic conditions. A beneficial role of marine drugs in human health has been recently proposed. The current review highlights various marine drugs and their compounds and role in the management of chronic diseases such as cancer, diabetes, neurodegenerative diseases, and cardiovascular disorders, which has led to the development of new drug treatment approaches.  相似文献   
26.
Designing and introducing novel wheel-shaped supramolecular as host complexes with new magnetic properties is the theme of the day. So in this study, new eight binuclear chromium (III) complexes, as models of real chromium-wheel host complexes, were designed based on changing of bridged-ligands and exchange coupling constants (J) of them were calculated using the broken symmetry density functional theory approach. Substitution of fluorine ligand in fluoro-bridged model [Cr2F(tBuCO2)2(H2O)2(OH)4]?1 by halogen anions (Cl?, Br? and I? ) decreased the antiferromagnetic exchange coupling between Cr(III) centres such that by going from F? to I? the J values became more positive. In the case of hydroxo-bridged model [Cr2OH(tBuCO2)2(H2O)2(OH)4]?1, replacement of hydroxyl by methoxy anion (OMe?) strengthened the antiferromagnetic property of the complex but substitution by sulfanide (SH?) and amide (NH2?) anions weakened it and changed the nature of complexes to ferromagnetic. Because of their different magnetic properties, these new investigated complexes can be suggested as interesting synthetic targets. Also, the J value changes due to ligand substitution were evaluated and it was found that the Cr–X bond strength and partial charges of involved atoms were the most effective factors on it.  相似文献   
27.
In order to improve visible light photocatalytic activities of the nanometer TiO2, a novel and efficient Cr,S-codoped TiO2 (Cr-TiO2-S) photocatalyst was prepared by precipitation-doping method. The crystalline structure, morphology, particle size, and chemical structure of Cr-TiO2-S were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Fourier transform infrared (FT-IR) techniques, respectively. Results indicate that the doping of Cr and S, cause absorption edge shifts to the visible light region (λ > 420 nm) compare to the pure TiO2, reduces average size of the TiO2 crystallites, enhances desired lattice distortion of Ti, promotes separation of photo-induced electron and hole pair, and thus improves pollutant decomposition under visible light irradiation. The photocatalytic activities of Cr-TiO2-S nanoparticles were evaluated using the photodegradation of methyl orange (MO) as probe reaction under the irradiation of UV and visible light and it was observed that the Cr-TiO2-S photocatalyst shows higher visible photocatalytic activity than the pure TiO2. The optimal Cr-TiO2-S concentration to obtain the highest photocatalytic activity was 5 mol% for both of Cr and S.  相似文献   
28.
We report the structure and thermal properties of blends comprising poly(vinylidene fluoride) (PVDF) and a random fluorinated copolymer (FCP) of poly(methyl methacrylate)‐random‐1H,1H,2H,2H‐perfluorodecyl methacrylate, promising membrane materials for oil–water separation. The roles of processing method and copolymer content on structure and properties were studied for fibrous membranes and films with varying compositions. Bead‐free, nonwoven fibrous membranes were obtained by electrospinning. Fiber diameters ranged from 0.4 to 1.9 μm, and thinner fibers were obtained for PVDF content >80%. As copolymer content increased, degree of crystallinity and onset of degradation for each blend decreased. Processing conditions have a greater impact on the crystallographic phase of PVDF than copolymer content. Fibers have polar beta phase; solution‐cast films contain gamma and beta phase; and melt crystallized films form alpha phase. Kwei's model was used to model the glass transition temperatures of the blends. Addition of FCP increases hydrophobicity of the electrospun membranes. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 312–322  相似文献   
29.
In this study, multiwalled carbon nanotube (MWCNT) was modified by the pyridine group using a silane agent and characterized by infrared spectroscopy (IR), thermal analysis (TG/DTA), and elemental analysis (CHN) and scanning electron microscopy (SEM). The application of this sorbent was investigated in determination of lead ions in aqueous samples, using flame atomic absorption spectrometry (FAAS). Through this study, different parameters such as pH and sample flow rate on adsorption process and eluent concentration, volume and flow rate were optimized. The limit of detection (LOD), the relative standard deviation and the recovery of the method were 2 ng mL?1, 1.3% and 99.7%, respectively. Two standard reference materials (NIST 1571 and NIST 1572) were used to verify accuracy of this method. Finally, the sorbent was successfully applied for extraction and determination of low levels of Pb(II) ions in aqueous samples.  相似文献   
30.
The recent global pandemic and its tremendous effect on the price fluctuations of crude oil illustrates the side effects of petroleum dependency more evident than ever. Over the past decades, both academic and industrial communities spared endless efforts in order to replace petroleum-based materials with bio-derived resources. In the current study, a series of shape memory polymer composites (SMPC's) was synthesized from epoxidized vegetable oils, namely canola oil and castor oil fatty acids (COFA's) as a 100% bio-based polyol and isophorone diisocyanate (IPDI) as an isocyanate using a solvent/catalyst-free method in order to eventuate polyurethanes (PU's). Thereafter, graphene oxide (GO) nanoplatelets were synthesized and embedded in the neat PU in order to overcome the thermomechanical drawbacks of the neat matrix. The chemical structure of the synthesized components, as well as the dispersion and distribution levels of the nanoparticles, was characterized. In the following, thermal and mechanical properties as well as shape memory behavior of the specimens were comprehensively investigated. Likewise, the thermal conductivity was determined. This study proves that synthesized PU's based on vegetable oil polyols, including graphene nanoparticles, exhibit proper thermal and mechanical properties, which make them stand as a potential candidate to compete with traditional petroleum-based SMPC's.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号