首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   0篇
化学   6篇
力学   53篇
数学   10篇
物理学   10篇
  2022年   1篇
  2018年   1篇
  2016年   1篇
  2014年   2篇
  2013年   4篇
  2012年   1篇
  2011年   3篇
  2010年   5篇
  2009年   7篇
  2008年   6篇
  2007年   5篇
  2006年   9篇
  2005年   2篇
  2004年   2篇
  2003年   7篇
  2002年   4篇
  2001年   3篇
  2000年   3篇
  1999年   3篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1984年   4篇
排序方式: 共有79条查询结果,搜索用时 62 毫秒
71.
Magyari  E.  Keller  B. 《Transport in Porous Media》2004,54(3):265-271
The title statement is proven for a circular cylinder whose surface temperature (above that of the ambient fluid) varies inversely proportional with the axial distance from the leading edge.  相似文献   
72.
The mechanical and thermal characteristics of the self-similar boundary-layer flows induced by continuous surfaces stretched with rapidly decreasing power-law velocities U wx m , m<?1 are considered. Comparing to the well studied cases of the increasing stretching velocities (m>0) several new features of basic significance have been found. Thus: (i) for m<?1 the boundary layer equations admit self-similar solutions only if a lateral suction is applied; (ii) the dimensionless suction velocity f w<0 must be strong enough, i.e. f w<f w,max(m) where f w,max(m) depends on m so that its absolute maximum max (f w,max(m))=?2.279 is reached for m→?∞, while for m→?1, f w,max(m)→?∞; (iii) the case {m→?∞, f w,max(m)=?2.279} of the flow boundary value problem is isomorphic to the stretching problems with exponentially decreasing velocities U w∝e ax with arbitrary a<0; (iv) for any fixed m<?1 and f w<f w,max(m) the flow problem admits a non-denumerable infinity of multiple solutions corresponding to the values of the dimensionless skin friction f (0)≡s belonging to a finite interval s∈ [s min(f w,m), s max(f w,m)]; (v) the solution is only unique for f w=f w,max(m) where s=s min(f w,m)= s max(f w,m) holds; (vi) to every one of the multiple solutions of the flow problem there corresponds a unique solution of the heat transfer problem with a wall temperature distribution T w?T x n and a well defined and distinct value of the dimensionless wall temperature gradient ?(0), except for the cases n=(|m|?1)/2 where ?(0) has the same value ?(0)=Pr·f w for the whole class of flow solutions with s∈[s min(f w,m), s max(f w,m)]; (vii) for f w→?∞ one obtains the `asymptotic suction profiles' corresponding to s=s min(f w,m)?f w and ?(0)?Pr·f w in an explicit analytic form. The paper includes several examples which illustrate the dependence of the heat and fluid flows induced by surfaces stretching with rapidly decreasing velocities on the physical parameters f w, m, n and Pr.  相似文献   
73.
In the present paper the steady boundary-layer flows induced by permeable stretching surfaces with variable temperature distribution are investigated under the aspect of Reynolds' analogy r = St x /C f(x). It is shown that for certain stretching velocities and wall temperature distributions, “Reynolds' function”r, i.e. the ratio of the local Stanton number St x and the skin friction coefficient C f(x) equals −1/2 for any value of the Prandtl number Pr and of the dimensionless suction/injection velocity f w. In all of these cases, the dimensionless temperature field ϑ is connected to the dimensionless downstream velocity f by the simple relationship ϑ=(f )Pr. It is also shown that in the general case, Reynolds' function r may possess several singularities in f w. The largest of them represents a critical value, so that for f w<f w,crit the solutions of the energy equation (although they still satisfy all the boundary conditions) become nonphysical.  相似文献   
74.
In a recent article by Barletta and Nield (Transport in Porous Media, DOI , 2009), the title problem for the fully developed parallel flow regime was considered assuming isoflux/isothermal wall conditions. For the limiting cases of the forced and the free convection, analytical solutions were reported; for the general case, numerical solutions were reported. The aim of the present note is (i) to give an analytical solution for the full problem in terms of the Weierstrass elliptic P-function, (ii) to illustrate this general approach by two easily manageable examples, and (iii) to rise a couple of questions of basic physical interest concerning the interplay between the viscous dissipation and the pressure work. In this context, the concept of “eigenflow” introduced by Barletta and Nield is discussed in some detail.  相似文献   
75.
 The problem of the self-similar boundary flow of a “Darcy-Boussinesq fluid” on a vertical plate with temperature distribution T w(x) = T +A·x λ and lateral mass flux v w(x) = a·x (λ−1)/2, embedded in a saturated porous medium is revisited. For the parameter values λ = 1,−1/3 and −1/2 exact analytic solutions are written down and the characteristics of the corresponding boundary layers are discussed as functions of the suction/ injection parameter in detail. The results are compared with the numerical findings of previous authors. Received on 8 March 1999  相似文献   
76.
In a very recent paper by Aydin and Kaya (Transp. Porous Media (to appear), 2008) the combined effects of viscous dissipation and surface mass flux on the forced-convection boundary-layer flow was considered. However, as the present Note shows, the thermal boundary condition imposed at the outer edge of the boundary-layer by Aydin and Kaya is incompatible with the energy equation, and thus the results of their paper are in error.  相似文献   
77.
The linear Darcy–Brinkman model of the high speed flow in a bidisperse porous medium proposed by Nield and Kuznetsov (Transport Phenomena in Porous Media, 2005) is revisited in this paper. For the steady unidirectional flow in a parallel plane channel the exact analytical solutions for the fluid velocities are worked out by the normal-mode reduction of the governing equations. The limiting cases of the weak and strong momentum transfer between the flows in the fracture and porous phases are discussed in detail. A comparison to the nonlinear Forchheimer extension of the model proposed recently by Nield and Kuznetsov (Transport Porous Media, 2013) shows that, in the considered parameter range, the nonlinear effect of the Forchheimer drag is negligibly small. Even the simplest zero-momentum transfer solution yields an acceptable approximation.  相似文献   
78.

Volume Contents

Contents of Volume 53  相似文献   
79.

Volume Contents

Contents of Volume 51  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号