首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   1篇
化学   32篇
力学   1篇
数学   3篇
物理学   13篇
  2024年   1篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   2篇
  2019年   1篇
  2017年   3篇
  2016年   4篇
  2015年   1篇
  2014年   6篇
  2013年   5篇
  2012年   4篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  1976年   1篇
排序方式: 共有49条查询结果,搜索用时 78 毫秒
41.
It was established that isopropyl salicylate can be used similarly to 1,3-diketones as a key component for a new efficient extraction system for selective separation of alkali metal cations. According to DFT modeling of complexes of isopropyl salicylate and 1,3-diketone with alkali metal cations (Li+, Na+, K+), six-membered metallacycles are formed whose stability decreases along the series Li > Na > K, which results in the observed enhanced affinity to lithium. The extraction ability of isopropyl salicylate is manifested in the presence of trioctylphosphine oxide (TOPO). The newly obtained complexes of isopropyl salicylate with alkali metal cations as well as their extracts in a mixture with TOPO are characterized by means of FT-IR, Raman, and NMR spectroscopy. The probable structure of the extracted lithium complex is presumed and the role of TOPO in the extraction process is investigated in detail. Extraction experiments showed extremely high separation coefficients for Li/Na and Li/K pairs in the extraction from a model multi-component solution.  相似文献   
42.
Identification of molecules in complex natural matrices relies on matching the fragmentation spectra of ions under investigation and the spectra acquired for the corresponding analytical standards. Currently, there are many databases of experimentally measured tandem mass spectrometry spectra (such as NIST, MzCloud, and Metlin), and considerable progress has been made in the development of software for predicting tandem mass spectrometry fragments in silico using combinatorial, machine learning, and quantum chemistry approaches (such as MetFrag, CFM-ID, and QCxMS). However, the electrospray ionization molecules can be ionized at different sites (protonated or deprotonated), and the fragmentation spectra of such ions are different. Here, we are using the combination of the in-ESI source hydrogen/deuterium exchange reaction and MSn fragmentation for the investigation of the fragmentation pathways for different protomers of organic molecules. It is shown that the distribution of the deuterium in the fragment ions reflects the presence of different protomers. For several molecules, the distribution of deuterium was traced up to the MS5 level of fragmentation revealing many unusual and unexpected effects. For example, we investigated the loss of HF from the ciprofloxacin and norfloxacin ions and observed that for ions protonated at –COOH group, the eliminating hydrogen always comes from –NH group. When ions are protonated at another site, the elimination of hydrogen with a probability of 30% occurs from the –NH group, and with a probability of 70%, it originates from other sites on the molecule. Such effects were not described previously. Quantum chemical simulation was used for the verification of the protonated structures and simulation of the corresponding fragmentation spectra.  相似文献   
43.
Abstract

A method for the synthesis of novel phosphorylated aminoacetals was developed. The latter are involved in Mannich reaction as amine component with calix[4]resorcinol and formaldehyde to form tetrasubstituted macrocycles containing four acetal groups and four phosphonate (phosphine oxide) fragments on the “upper” rim of molecule with high yields.  相似文献   
44.
Monoisotopic scandium yttrium oxyorthosilicate crystals as a material for quantum memory storage with high optical quality were grown by the Czochralski method. This material, of composition Sc1.368Y0.632SiO5, is characterized by congruent melting and a melting point 60 K below the temperature for the ideal solid‐solution series Y2SiO5–Sc2SiO5. The structure of the crystals was refined on the basis of high‐quality single‐crystal X‐ray diffraction data. Sc1.368Y0.632SiO5 belongs to B‐type RE2SiO5 (space group C2/c). Scandium and yttrium cations are distributed among two 8f sites with coordination numbers 7 and 6 for which the occupancy parameters ratios Sc:Y and average bond lengths are, respectively, 0.473:0.527 and RE1—O = 2.305 (2) Å, and 0.895:0.105 and RE2—O = 2.143 (2) Å. It is shown that the character of the occupancy of the positions of the cations with coordination numbers (CN) 6 and 7 for these solid solutions can be approximated by a polynomial dependence, the magnitude of the coefficients of which depends on the difference in the ionic radii of the cations. A preliminary electron paramagnetic resonance (EPR) study shows that activator ions with a large ionic radius at a concentration less than 0.1% occupy a position with CN = 7.  相似文献   
45.
Hydrophobic deep eutectic solvents (DES) have recently been used as green alternatives to conventional solvents in several applications. In addition to their tunable melting temperature, the viscosity of DES can be optimized by selecting the constituents and molar ratio. This study examined the viscosity of 14 eutectic systems formed by natural substances over a wide range of temperatures and compositions. The eutectic systems in this study were classified as ideal or non-ideal based on their solid–liquid equilibria (SLE) data found in the literature. The eutectic systems containing constituents with cyclohexyl rings were considerably more viscous than those containing linear or phenyl constituents. Moreover, the viscosity of non-ideal eutectic systems was higher than that of ideal eutectic systems because of the strong intermolecular interactions in the liquid solution. At temperatures considerably lower than the melting temperature of the pure constituents, non-ideal and ideal eutectic systems with cyclohexyl constituents exhibited considerably high viscosity, justifying the kinetic limitations in crystallization observed in these systems. Overall, understanding the correlation between the molecular structure of constituents, SLE, and the viscosity of the eutectic systems will help in designing new, low-viscosity DES.  相似文献   
46.
We present here for the first time the rigorous solution of the boundary diffraction problem of microwave scattering by a multilayered 2D cylinder. The cylinder layers may be made of isotropic, uniaxial anisotropic, electrically and (or) magnetically gyrotropic materials. The number and thickness of the layers may have arbitrary values in our solution. We calculated scattering diagrams (a radial component of real part of the Poynting vector) inside and outside of cylinder using the solution. Here we present scattering diagrams from a three-layered cylinder made of SiC and metamaterial or saturate magnetized ferrite. Diagrams were computed for wave incidence angles θ=π/2,π/3,π/6 inside of metamaterial/ferrite layer at a distance of 1 mm and outside of cylinder at a distance of 2.5 mm from the cylinder axis.  相似文献   
47.

We have developed a mathematical model and stochastic numerical simulation for the transmission of COVID-19 and other similar infectious diseases that accounts for the geographic distribution of population density, detailed down to the level of location of individuals, and age-structured contact rates. Our analytical framework includes a surrogate model optimization process to rapidly fit the parameters of the model to the observed epidemic curves for cases, hospitalizations, and deaths. This toolkit (the model, the simulation code, and the optimizer) is a useful tool for policy makers and epidemic response teams, who can use it to forecast epidemic development scenarios in local settings (at the scale of cities to large countries) and design optimal response strategies. The simulation code also enables spatial visualization, where detailed views of epidemic scenarios are displayed directly on maps of population density. The model and simulation also include the vaccination process, which can be tailored to different levels of efficiency and efficacy of different vaccines. We used the developed framework to generate predictions for the spread of COVID-19 in the canton of Geneva, Switzerland, and validated them by comparing the calculated number of cases and recoveries with data from local seroprevalence studies.

  相似文献   
48.
Arginine deiminase (ADI) catalyzes the hydrolytic conversion of L-arginine to ammonia and L-citrulline as part of the energy-producing L-arginine degradation pathway. The chemical mechanism for ADI catalysis involves initial formation and subsequent hydrolysis of a Cys-alkylthiouronium ion intermediate. The structure of the Pseudomonas aeruginosa ADI-(L-arginine) complex guided the design of arginine analogs that might react with the ADIs to form inactive covalent adducts during catalytic turnover. One such candidate is L-canavanine, in which an N-methylene of L-arginine is replaced by an N-O. This substance was shown to be a slow substrate-producing O-ureido-L-homoserine. An in depth kinetic and mass spectrometric analysis of P. aeruginosa ADI inhibition by L-canavanine showed that two competing pathways are followed that branch at the Cys-alkylthiouronium ion intermediate. One pathway leads to direct formation of O-ureido-L-homoserine via a reactive thiouronium intermediate. The other pathway leads to an inactive form of the enzyme, which was shown by chemical model and mass spectrometric studies to be a Cys-alkylisothiourea adduct. This adduct undergoes slow hydrolysis to form O-ureido-L-homoserine and regenerated enzyme. In contrast, kinetic and mass spectrometric investigations demonstrate that the Cys-alkylthiouronium ion intermediate formed in the reaction of L-canavanine with Bacillus cereus ADI partitions between the product forming pathway (O-ureido-L-homoserine and free enzyme) and an inactivation pathway that leads to a stable Cys-alkylthiocarbamate adduct. The ADIs from Escherichia coli, Burkholderia mallei, and Giardia intestinalis were examined in order to demonstrate the generality of the L-canavanine slow substrate inhibition and to distinguish the kinetic behavior that defines the irreversible inhibition observed with the B. cereus ADI from the time controlled inhibition observed with the P. aeruginosa, E. coli, B. mallei, and G. intestinalis ADIs.  相似文献   
49.
We present here dependencies of scattered and absorbed powers of incident perpendicularly and parallel polarized microwaves by a multilayered cylinder. We consider here the normal (angle ??=90°) and oblique (angles ??=60°,30°,5°) incidence of microwave on the cylinder. The one consists of a glass core that is coated by the six anisotropic metamaterial and lossy n-Si semiconductor alternative layers. Characteristics of a cylinder with the semiconductor external layer are presented. The dispersion dependency of n-Si losses was taken into account. The metamaterial is a uniaxial anisotropic medium with the electric and magnetic plasma resonances in the frequency range from 1 until 4?GHz. The anisotropic metamaterial can include the constitutive parameters equal to zero. The multilayered cylinder has the external radius equal to 2?mm. The glass core has a radius equal to 0.5?mm. The thickness of all layers is the same. We have compared the scattered and absorbed power dependencies on the microwave polarization, the angle of microwave incidence (the normal and oblique directions of the incidence to the z-axis), and the n-Si specific resistivity. We discovered specific dependencies of scattered and absorbed powers on the parameters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号