首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15950篇
  免费   652篇
  国内免费   44篇
化学   10762篇
晶体学   290篇
力学   504篇
综合类   1篇
数学   1298篇
物理学   3791篇
  2024年   49篇
  2023年   171篇
  2022年   443篇
  2021年   433篇
  2020年   476篇
  2019年   534篇
  2018年   502篇
  2017年   477篇
  2016年   689篇
  2015年   499篇
  2014年   790篇
  2013年   1370篇
  2012年   1169篇
  2011年   1222篇
  2010年   800篇
  2009年   626篇
  2008年   790篇
  2007年   786篇
  2006年   629篇
  2005年   546篇
  2004年   424篇
  2003年   355篇
  2002年   283篇
  2001年   180篇
  2000年   153篇
  1999年   109篇
  1998年   78篇
  1997年   117篇
  1996年   106篇
  1995年   86篇
  1994年   82篇
  1993年   110篇
  1992年   110篇
  1991年   85篇
  1990年   78篇
  1989年   84篇
  1988年   65篇
  1987年   62篇
  1986年   60篇
  1985年   78篇
  1984年   88篇
  1983年   63篇
  1982年   77篇
  1981年   47篇
  1980年   57篇
  1979年   76篇
  1978年   61篇
  1977年   73篇
  1976年   57篇
  1975年   54篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
The ability to engineer and re‐program the surfaces of cells would provide an enabling synthetic biological method for the design of cell‐ and tissue‐based therapies. A new cell surface‐engineering strategy is described that uses lipid‐chemically self‐assembled nanorings (lipid‐CSANs) that can be used for the stable and reversible modification of any cell surface with a molecular reporter or targeting ligand. In the presence of a non‐toxic FDA‐approved drug, the nanorings were quickly disassembled and the cell–cell interactions reversed. Similar to T‐cells genetically engineered to express chimeric antigen receptors (CARS), when activated peripheral blood mononuclear cells (PBMCs) were functionalized with the anti‐EpCAM‐lipid‐CSANs, they were shown to selectively kill antigen‐positive cancer cells. Taken together, these results demonstrate that lipid‐CSANs have the potential to be a rapid, stable, and general method for the reversible engineering of cell surfaces and cell–cell interactions.  相似文献   
942.
We describe herein a catalytic, enantioselective process for the synthesis of 4H‐chromenes which are important structural elements of many natural products and biologically active compounds. A sequence comprising a conjugate addition of β‐diketones to in situ generated ortho‐quinone methides followed by a cyclodehydration reaction furnished 4‐aryl‐4H‐chromenes in generally excellent yields and high optical purity. A BINOL‐based chiral phosphoric acid was employed as a Brønsted acid catalyst which converted ortho‐hydroxy benzhydryl alcohols into hydrogen‐bonded ortho‐quinone methides and effected the carbon–carbon bond‐forming event with high enantioselectivity.  相似文献   
943.
Photochemical activation of [(PNNH)Rh(N3)] (PNNH=6‐di‐(tert‐butyl)phosphinomethyl‐2,2′‐bipyridine) complex 2 produced the paramagnetic (S=1/2), [(PNN)Rh?N.‐Rh(PNN)] complex 3 (PNN?=methylene‐deprotonated PNNH), which could be crystallographically characterized. Spectroscopic investigation of 3 indicates a predominant nitridyl radical (.N2?) character, which was confirmed computationally. Complex 3 reacts selectively with CO, producing two equivalents of [(PNN)RhI(CO)] complex 4 , presumably by nitridyl radical N,N‐coupling.  相似文献   
944.
Photosystem I (PSI) is one of the most studied electron transfer (ET) systems in nature; it is found in plants, algae, and bacteria. The effect of the system structure and its electronic properties on the electron transfer rate and yield was investigated for years in details. In this work we show that not only those system properties affect the ET efficiency, but also the electrons’ spin. Using a newly developed spintronic device and a technique which enables control over the orientation of the PSI monolayer relative to the device (silver) surface, it was possible to evaluate the degree and direction of the spin polarization in ET in PSI. We find high‐spin selectivity throughout the entire ET path and establish that the spins of the electrons being transferred are aligned parallel to their momenta. The spin selectivity peaks at 300 K and vanishes at temperatures below about 150 K. A mechanism is suggested in which the chiral structure of the protein complex plays an important role in determining the high‐spin selectivity and its temperature dependence. Our observation of high light induced spin dependent ET in PSI introduces the possibility that spin may play an important role in ET in biology.  相似文献   
945.
Flexible and dynamic porous coordination polymers (PCPs) with well‐defined nanospaces composed of chromophoric organic linkers provide a scaffold for encapsulation of versatile guest molecules through noncovalent interactions. PCPs thus provide a potential platform for molecular recognition. Herein, we report a flexible 3D supramolecular framework {[Zn(ndc)(o‐phen)]?DMF}n (o‐phen=1,10‐phenanthroline, ndc=2,6‐napthalenedicarboxylate) with confined nanospaces that can accommodate different electron‐donating aromatic amine guests with selective turn‐on emission signaling. This system serves as a molecular recognition platform through an emission‐readout process. Such unprecedented tunable emission with different amines is attributed to its emissive charge‐transfer (CT) complexation with o‐phen linkers. In certain cases this CT emission is further amplified by energy transfer from the chromophoric linker unit ndc, as evidenced by single‐crystal X‐ray structural characterization.  相似文献   
946.
The efficient collection of solar energy relies on the design and construction of well‐organized light‐harvesting systems. Herein we report that supramolecular phenanthrene polymers doped with pyrene are effective collectors of light energy. The linear polymers are formed through the assembly of short amphiphilic oligomers in water. Absorption of light by phenanthrene residues is followed by electronic energy transfer along the polymer over long distances (>100 nm) to the accepting pyrene molecules. The high efficiency of the energy transfer, which is documented by large fluorescence quantum yields, suggests a quantum coherent process.  相似文献   
947.
Structurally thermostable mesoporous anatase TiO2 (m‐TiO2) nanoparticles, uniquely decorated with atomically dispersed SiO2, is reported for the first time. The inorganic Si portion of the novel organosilane template, used as a mesopores‐directing agent, is found to be incorporated in the pore walls of the titania aggregates, mainly as isolated sites. This is evident by transmission electron microscopy and high‐angle annular dark field scanning transmission electron microscopy, combined with electron dispersive X‐ray spectroscopy. This type of unique structure provides exceptional stability to this new material against thermal collapse of the mesoporous structure, which is reflected in its high surface area (the highest known for anatase titania), even after high‐temperature (550 °C) calcination. Control of crystallite size, pore diameter, and surface area is achieved by varying the molar ratios of the titanium precursor and the template during synthesis. These mesoporous materials retain their porosity and high surface area after template removal and further NaOH/HCl treatment to remove silica. We investigate their performance for dye‐sensitized solar cells (DSSCs) with bilayer TiO2 electrodes, which are prepared by applying a coating of m‐TiO2 onto a commercial titania (P25) film. The high surface area of the upper mesoporous layer in the P25–m‐TiO2 DSSC significantly increases the dye loading ability of the photoanode. The photocurrent and fill factor for the DSSC with the bilayer TiO2 electrode are greatly improved. The large increase in photocurrent current (ca. 56 %) in the P25–m‐TiO2 DSSC is believed to play a significant role in achieving a remarkable increase in the photovoltaic efficiency (60 %) of the device, compared to DSSCs with a monolayer of P25 as the electrode.  相似文献   
948.
Introduction of defects and nitrogen doping are two of the most pursued methods to tailor the properties of graphene for better suitability to applications such as catalysis and energy conversion. Doping nitrogen atoms at defect sites of graphene and codoping them along with boron atoms can further increase the efficiency of such systems due to better stability of nitrogen at defect sites and stabilization provided by B?N bonding. Systematic exploration of the possible doping/codoping configurations reflecting defect regions of graphene presents a prevalent doping site for nitrogen‐rich BN clusters and they are also highly suitable for modulating (0.2–0.9 eV) the band gap of defect graphene. Such codoped systems perform significantly better than the platinum surface, undoped defect graphene, and the single nitrogen or boron atom doped defect graphene system for dioxygen adsorption. Significant stretching of the O?O bond indicates a lowering of the bond breakage barrier, which is advantageous for applications in the oxygen reduction reaction.  相似文献   
949.
Rate constants and derived activation parameters of organic reactions in aqueous media, in particular Diels–Alder reactions, are sensitive to the presence of cosolvents in water. To enhance the solubility window of water, we introduced ionic liquids as cosolvents in the aqueous Diels–Alder reaction between anthracene‐9‐carbinol and N‐ethylmaleimide. The reactive potentials of the organic compounds are parameterized by using semi‐empirical quantum chemical methods. The principle of Savage–Wood additivity of group interactions is used to quantify the pairwise group interactions among chemically inert ionic liquids and organic reactants, both at initial and transition states of the reaction. The present approach shows promise, as the use of simple calculations from easily available kinetic data can help researchers to understand the versatility of green ionic‐liquid alternatives to volatile organic solvents.  相似文献   
950.
Herein,we report on the synthesis and lithium storage properties of electrospun one-dimensional(1D) CuFe_2O_4 nanomaterials.1D CuFe_2O_4nanotubes and nanorods were fabricated by a single spinneret electrospinning method followed by thermal decomposition for removal of polymers from the precursor fibers.The as-prepared CuFe_2O_4 nanotubes with wall thickness of ~50 nm presented diameters of ~150 nm and lengths up to several millimeters.It was found that phase separation between the electrospun composite materials occured during the electrospinning process,while the as-spun precursor nanofibers composed of polyacrylonitrile(PAN),polyvinylpyrrolidone(PVP) and metal salts might possess a core-shell structure(PAN as the core and PVP/metal salts composite as the shell) and then transformed to a hollow structure after calcination.Moreover,as a demonstration of the functional properties of the 1D nanostructure.CuFe_2O_4 nanotubes and nanorods were investigated as anodes for lithium ion batteries(LIBs).It was demonstrated that CuFe_2O_4 nanotubes not only delivered a high reversible capacity of ~816 mAh·g~(-1) at a current density of 200 mA·g~(-1)over 50 cycles,but also showed superior rate capability with respect to counterpart nanorods.Probably,the enhanced electrochemical performance can be attributed to its high specific surface areas as well as the unique hollow structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号