首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2520篇
  免费   74篇
  国内免费   8篇
化学   1810篇
晶体学   2篇
力学   52篇
数学   278篇
物理学   460篇
  2023年   13篇
  2022年   18篇
  2021年   36篇
  2020年   50篇
  2019年   33篇
  2018年   36篇
  2017年   26篇
  2016年   68篇
  2015年   79篇
  2014年   70篇
  2013年   173篇
  2012年   121篇
  2011年   162篇
  2010年   121篇
  2009年   96篇
  2008年   139篇
  2007年   133篇
  2006年   150篇
  2005年   167篇
  2004年   115篇
  2003年   92篇
  2002年   87篇
  2001年   38篇
  2000年   31篇
  1999年   38篇
  1998年   31篇
  1997年   28篇
  1996年   33篇
  1995年   25篇
  1994年   23篇
  1993年   26篇
  1992年   25篇
  1991年   21篇
  1990年   29篇
  1989年   11篇
  1988年   18篇
  1987年   21篇
  1986年   18篇
  1985年   15篇
  1984年   13篇
  1983年   16篇
  1982年   12篇
  1981年   10篇
  1980年   16篇
  1979年   15篇
  1977年   18篇
  1976年   15篇
  1975年   10篇
  1974年   9篇
  1973年   10篇
排序方式: 共有2602条查询结果,搜索用时 234 毫秒
991.
The dynamics of oblique shock wave/turbulent boundary layer interactions is analyzed by mining a large-eddy simulation (LES) database for various strengths of the incoming shock. The flow dynamics is first analyzed by means of dynamic mode decomposition (DMD), which highlights the simultaneous occurrence of two types of flow modes, namely a low-frequency type associated with breathing motion of the separation bubble, accompanied by flapping motion of the reflected shock, and a high-frequency type associated with the propagation of instability waves past the interaction zone. Global linear stability analysis performed on the mean LES flow fields yields a single unstable zero-frequency mode, plus a variety of marginally stable low-frequency modes whose stability margin decreases with the strength of the interaction. The least stable linear modes are grouped into two classes, one of which bears striking resemblance to the breathing mode recovered from DMD and another class associated with revolving motion within the separation bubble. The results of the modal and linear stability analysis support the notion that low-frequency dynamics is intrinsic to the interaction zone, but some continuous forcing from the upstream boundary layer may be required to keep the system near a limit cycle. This can be modeled as a weakly damped oscillator with forcing, as in the early empirical model by Plotkin (AIAA J 13:1036–1040, 1975).  相似文献   
992.
The interesting unimolecular dissociation chemistry of dimethyl oxalate (DMO) ions, CH3O-C(=O)-C(=O)-OCH 3 ·+ , has been studied by vacuum ultraviolet photoionization and tandem mass spectrometry based experiments. The measured appearance energy (AE) for the generation of CH3O-C=O+ (10. 5 eV) is not compatible with a simple bond cleavage involving the cogeneration of the radical CH3O-C=O· whose calculated AE is 11 kcal/mol higher. However, because the CH3O-C=O· radical is thermodynamically less stable than its dissociation products CH3 · and CO2, by 19 kcal/mol, a two-step dissociation of ionized DMO into CH3O-C=O+ + CH 3 · + CO2 is energetically feasible. Collision induced dissociative ionization experiments clearly show that low energy DMO ions dissociate into CH3 · + CO2 without the intermediacy of CH3O-C=O·. Experiments using a charged collision chamber further indicate that CO2 is released first, followed by loss of CH3 · and not vice versa and a mechanism is proposed. The measured AE, which we assign to the two-step process, is 8 kcal/mol higher than the calculated value. This could be due to a competitive shift caused by a prominent low energy decarbonylation reaction yielding the hydrogen bridged radical cation CH2=O … H … O=C-OCH3 ·+. However, from metastable ion observations and AE measurements on deuterium labeled DMO ions, it follows that there is no competitive shift and that the elevated AE for the two-step process corresponds to the barrier for the first step, loss of CO2. Finally, neutralization-reionization experiments on ionized DMO and CH3O-C=O+ provide evidence for the existence of CH3O-C=O· as a kinetically stable radical.  相似文献   
993.
We use particle-based computer simulations to study the rheology of suspensions of high-functionality star polymers with long entangled arms. Such particles have properties which are intermediate between those of soft colloidal particles and entangled polymer chains. In the simulations, each star polymer is coarse-grained to a single particle. In order to faithfully reproduce dynamical properties, it is very important to not only include time-averaged interactions (potentials of mean force) but to also account for transient interactions induced by entanglements between the arms of different star polymers. Using a model which has all these features, it is found that, for sufficiently high shear rates, the start-up shear stress displays an overshoot. With increasing concentration, the core interactions increasingly dominate the initial stress response, leading to a maximum in the stress overshoot at relatively low strain values (0.1 to 0.5). Transient forces start to dominate after this initial stage. In a simulated experiment in which the shear rate is suddenly stepped-down from a high to a lower value, the stress shows a clear undershoot, with the minimum stress again at a relatively low strain value (based on the new shear rate). Finally, it is shown that a stress plateau develops in the flow curve. This plateau is absent when the transient forces between the polymer stars are not taken into account.  相似文献   
994.
In the framework of the European Commission co-funded LAPCAT (Long-Term Advanced Propulsion Concepts and Technologies) project, the methodology of a combined ground-based testing and numerical modelling analysis of supersonic combustion flow paths was established. The approach is based on free jet testing of complete supersonic combustion ramjet (scramjet) configurations consisting of intake, combustor and nozzle in the High Enthalpy Shock Tunnel Göttingen (HEG) of the German Aerospace Center (DLR) and computational fluid dynamics studies utilising the DLR TAU code. The capability of the established methodology is demonstrated by applying it to the flow path of the generic HyShot II scramjet flight experiment configuration.  相似文献   
995.

Background  

The Adhesion G protein-coupled receptors (GPCRs) are membrane-bound receptors with long N termini. This family has 33 members in humans. Several Adhesion GPCRs are known to have important physiological functions in CNS development and immune system response mediated by large cell surface ligands. However, the majority of Adhesion GPCRs are still poorly studied orphans with unknown functions.  相似文献   
996.
We experimentally demonstrate that the decoherence of a spin by a spin bath can be completely eliminated by fully polarizing the spin bath. We use electron paramagnetic resonance at 240 GHz and 8 T to study the electron-spin coherence time T2 of nitrogen-vacancy centers and nitrogen impurities in diamond from room temperature down to 1.3 K. A sharp increase of T2 is observed below the Zeeman energy (11.5 K). The data are well described by a suppression of the flip-flop induced spin bath fluctuations due to thermal electron-spin polarization. T2 saturates at approximately 250 micros below 2 K, where the polarization of the electron-spin bath exceeds 99%.  相似文献   
997.
We designed, constructed, and tested a single-beam optical trapping instrument employing twin electro-optic deflectors (EODs) to steer the trap in the specimen plane. Compared with traditional instruments based on acousto-optic deflectors (AODs), EOD-based traps offer a significant improvement in light throughput and a reduction in deflection-angle (pointing) errors. These attributes impart improved force and position resolution, making EOD-based traps a promising alternative for high-precision nanomechanical measurements of biomaterials.  相似文献   
998.
The fluorescence quenching kinetics of two porphyrin dendrimer series (GnTPPH(2) and GnPZn) by different type of quenchers is reported. The microenvironment surrounding the core in GnPZn was probing by core-quencher interactions using benzimidazole. The dependence of quencher binding constant (K ( a )) on generation indicates the presence of a weak interaction between branches and the core of the porphyrin dendrimer. The similar free volume in dendrimers of third and fourth generation suggests that structural collapse in high generations occurs by packing of the dendrimer peripheral layer. Dynamic fluorescence quenching of the porphyrin core by 1,3-dicyanomethylene-2-methyl-2-pentyl-indan (PDCMI) in GnTPPH(2) is a distance dependent electron transfer process with an exponential attenuation factor beta = 0.33 A(-1). The quenching by 1,2-dibromobenzene occurs by diffusion process of the quencher toward to the porphyrin core, and its rate constant is practically independent of dendrimer generation.  相似文献   
999.
When solving elliptic boundary value problems using integral equation methods one may need to evaluate potentials represented by a convolution of discretized layer density sources against a kernel. Standard quadrature accelerated with a fast hierarchical method for potential field evaluation gives accurate results far away from the sources. Close to the sources this is not so. Cancellation and nearly singular kernels may cause serious degradation. This paper presents a new scheme based on a mix of composite polynomial quadrature, layer density interpolation, kernel approximation, rational quadrature, high polynomial order corrected interpolation and differentiation, temporary panel mergers and splits, and a particular implementation of the GMRES solver. Criteria for which mix is fastest and most accurate in various situations are also supplied. The paper focuses on the solution of the Dirichlet problem for Laplace’s equation in the plane. In a series of examples we demonstrate the efficiency of the new scheme for interior domains and domains exterior to up to 2000 close-to-touching contours. Densities are computed and potentials are evaluated, rapidly and accurate to almost machine precision, at points that lie arbitrarily close to the boundaries.  相似文献   
1000.
A plane strain study of wedge indentation of a thin film on a substrate is performed. The film is modelled with the strain gradient plasticity theory by Gudmundson [Gudmundson, P., 2004. A unified treatment of strain gradient plasticity. Journal of the Mechanics and Physics of Solids 52, 1379–1406] and analysed using finite element simulations. Several trends that have been experimentally observed elsewhere are captured in the predictions of the mechanical behaviour of the thin film. Such trends include increased hardness at shallow depths due to gradient effects as well as increased hardness at larger depths due to the influence of the substrate. In between, a plateau is found which is observed to scale linearly with the material length scale parameter. It is shown that the degree of hardening of the material has a strong influence on the substrate effect, where a high hardening modulus gives a larger impact on this effect. Furthermore, pile-up deformation dominated by plasticity at small values of the internal length scale parameter is turned into sink-in deformation where plasticity is suppressed for larger values of the length scale parameter. Finally, it is demonstrated that the effect of substrate compliance has a significant effect on the hardness predictions if the effective stiffness of the substrate is of the same order as the stiffness of the film.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号