首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2534篇
  免费   74篇
  国内免费   8篇
化学   1823篇
晶体学   2篇
力学   52篇
数学   279篇
物理学   460篇
  2023年   15篇
  2022年   28篇
  2021年   36篇
  2020年   50篇
  2019年   33篇
  2018年   36篇
  2017年   26篇
  2016年   68篇
  2015年   79篇
  2014年   70篇
  2013年   173篇
  2012年   121篇
  2011年   162篇
  2010年   121篇
  2009年   96篇
  2008年   139篇
  2007年   133篇
  2006年   150篇
  2005年   167篇
  2004年   115篇
  2003年   92篇
  2002年   87篇
  2001年   38篇
  2000年   31篇
  1999年   38篇
  1998年   31篇
  1997年   28篇
  1996年   33篇
  1995年   25篇
  1994年   23篇
  1993年   26篇
  1992年   25篇
  1991年   21篇
  1990年   29篇
  1989年   11篇
  1988年   18篇
  1987年   21篇
  1986年   18篇
  1985年   15篇
  1984年   13篇
  1983年   16篇
  1982年   12篇
  1981年   10篇
  1980年   16篇
  1979年   15篇
  1977年   18篇
  1976年   15篇
  1975年   10篇
  1974年   9篇
  1973年   10篇
排序方式: 共有2616条查询结果,搜索用时 15 毫秒
71.
Abstract The photosensitizing properties of two water soluble derivatives of bacteriochlorophyll a , bacteriochlorophyllin a and bacteriochlorin a (lacking the central Mg-ion) were investigated and compared to those of hematoporphyrin derivatives. At physiological pH the oxygen consumption rate of histidine, tryptophan, dithiothreitol and guanosine upon illumination was 3 to 4 times higher when bacteriochlorin a was used as photosensitizer than when hematoporphyrin derivatives were used. Especially bacteriochlorin a proved to be an effective sensitizer for the killing of L929 cells. Because bacteriochlorin a has an absorption maximum at 765 nm in phosphate buffered saline (allowing a light penetration in tissue about ten times larger than at 630 nm) and a high molar absorption coefficient (32 000 M cm−1) it has promising possibilities for the application in photodynamic therapy.  相似文献   
72.
Pervaporation experiments were performed on microporous titania membranes using several binary liquids containing 2-20 wt % water. The membrane was nonselective in the separation of water from alcohols and p-dioxane but showed a remarkably high selectivity in the separation of water from ethylene glycol/water mixtures with < or =15 mol % water. The absence of selectivity under most conditions is explained by the large pore size (0.9 nm) of microporous titania. The high selectivity for water in the separation from ethylene glycol can be explained by the formation of a hydrogen-bonded network of ethylene glycol in the micropores, which blocks transport of ethylene glycol, while water can still permeate through. These networks are disrupted by water at higher concentrations, leading to full loss of membrane selectivity.  相似文献   
73.
We have studied the dissociative recombination of the first three vibrational levels of O(2) (+) in its electronic ground X (2)Pi(g) state. Absolute rate coefficients, cross sections, quantum yields and branching fractions have been determined in a merged-beam experiment in the heavy-ion storage ring, CRYRING, employing fragment imaging for the reaction dynamics. We present the absolute total rate coefficients as function of collision energies up to 0.4 eV for five different vibrational populations of the ion beam, as well as the partial (vibrationally resolved) rate coefficients and the branching fractions near 0 eV collision energy for the vibrational levels v=0, 1, and 2. The vibrational populations used were produced in a modified electron impact ion source, which has been calibrated using Cs-O(2)(+) dissociative charge transfer reactions. The measurements indicate that at low collision energies, the total rate coefficient is weakly dependent on the vibrational excitation. The calculated thermal rate coefficient at 300 K decreases upon vibrational excitation. The partial rate coefficients as well as the partial branching fractions are found to be strongly dependent on the vibrational level. The partial rate coefficient is the fastest for v=0 and goes down by a factor of two or more for v=1 and 2. The O((1)S) quantum yield, linked to the green airglow, increases strongly upon increasing vibrational level. The effects of the dissociative recombination reactions and super elastic collisions on the vibrational populations are discussed.  相似文献   
74.
Loss of an alkyl group X? from acetylenic alcohols HC?C? CX(OH)(CH3) and gas phase protonation of HC?C? CO? CH3 are both shown to yield stable HC?C? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}(OH)(CH3) ions. Ions of this structure are unique among all other [C4H5O]+ isomers by having m/z 43 [C2H3O]+ as base peak in both the metastable ion and collisional activation spectra. It is concluded that the composite metastable peak for formation of m/z 43 corresponds to two distinct reaction profiles which lead to the same product ion, CH3\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}?O, and neutral, HC?CH. It is further shown that the [C4H5O]+ ions from related alcohols (like HC?C? CH(OH)(CH3)) which have an α-H atom available for isomerization into energy rich allenyl type molecular ions, consist of a second stable structure, H2C?\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}? C(OH)?CH2.  相似文献   
75.
Sensitive and specific procedures for the chromatographic detection of tryptophan and tryptophan-containing peptides are described. Formaldehyde gas induces strong and characteristic fluorescence from tryptophan and peptides with NH2-terminal tryptophan residues on silica gel. On filter-paper, the detection of small amounts of these compounds requires the additional use of an oxidant, such as ozone. Treatment with formaldehyde-hydrochloric acid was used as a method for inducing fluorescence from tryptophan-containing peptides regardless of the position of the tryptophan residue in the peptide molecule. This reaction is useful for the chromatographic demonstration of small amounts of such peptides on both paper and silica gel. The spectral properties of the fluorophores of such tryptophan-containing peptides are distinctive and serve to distinguish them from all other known biogenic compounds that are capable of giving fluorescence with formaldehyde.  相似文献   
76.
High-temperature superconductivity exists in layered, square-planar cuprates, but is almost absent in most other Cu(II) compounds and in most Ag(II) and Au(II) compounds. Valence state II is quite unusual in silver and gold and often disproportionates to valence states I and III ("negative-U compounds"). The two-electron difference in oxidation state is suggestive of electron pairing, a prerequisite for superconductivity. In the present paper the connection between disproportionation and geometrical structure on one hand and superconductivity on the other is discussed by using the accepted theory for mixed valence complexes. It is concluded that absence of superconductivity in gold and silver compounds can be connected to the instability of oxidation state II and the large difference in equilibrium geometry between oxidation states I and III.  相似文献   
77.
Carbon nanotubes (CNTs) constitute a class of nanomaterials that possess characteristics suitable for a variety of possible applications. Their compatibility with aqueous environments has been made possible by the chemical functionalization of their surface, allowing for exploration of their interactions with biological components including mammalian cells. Functionalized CNTs (f-CNTs) are being intensively explored in advanced biotechnological applications ranging from molecular biosensors to cellular growth substrates. We have been exploring the potential of f-CNTs as delivery vehicles of biologically active molecules in view of possible biomedical applications, including vaccination and gene delivery. Recently we reported the capability of ammonium-functionalized single-walled CNTs to penetrate human and murine cells and facilitate the delivery of plasmid DNA leading to expression of marker genes. To optimize f-CNTs as gene delivery vehicles, it is essential to characterize their interactions with DNA. In the present report, we study the interactions of three types of f-CNTs, ammonium-functionalized single-walled and multiwalled carbon nanotubes (SWNT-NH3+; MWNT-NH3+), and lysine-functionalized single-walled carbon nanotubes (SWNT-Lys-NH3+), with plasmid DNA. Nanotube-DNA complexes were analyzed by scanning electron microscopy, surface plasmon resonance, PicoGreen dye exclusion, and agarose gel shift assay. The results indicate that all three types of cationic carbon nanotubes are able to condense DNA to varying degrees, indicating that both nanotube surface area and charge density are critical parameters that determine the interaction and electrostatic complex formation between f-CNTs with DNA. All three different f-CNT types in this study exhibited upregulation of marker gene expression over naked DNA using a mammalian (human) cell line. Differences in the levels of gene expression were correlated with the structural and biophysical data obtained for the f-CNT:DNA complexes to suggest that large surface area leading to very efficient DNA condensation is not necessary for effective gene transfer. However, it will require further investigation to determine whether the degree of binding and tight association between DNA and nanotubes is a desirable trait to increase gene expression efficiency in vitro or in vivo. This study constitutes the first thorough investigation into the physicochemical interactions between cationic functionalized carbon nanotubes and DNA toward construction of carbon nanotube-based gene transfer vector systems.  相似文献   
78.
The use of non-polar, small polymers as matrices for the analysis of low molecular weight compounds in polymer-assisted laser desorption/ionization mass spectrometry (PALDI-MS) is demonstrated. The matrices evaluated were either based on an oligothiophene or a benzodioxin backbone. Metallocenes, polycyclic hydrocarbons, a fluorosurfactant, and a subset of small organic compounds with various functionalities, served as model analytes. The mechanism of ionization charge transfer is discussed and ionization potentials for the matrices in the study have been estimated using density functional theory (DFT) calculations. Some of the results are possibly contradictory to the generally accepted limiting conditions for gas-phase charge-transfer reactions. These results are interpreted in the light of energy pooling. Also a new mass calibration procedure for the low-mass region in positive ion mode is presented, and some aspects of the ionization/desorption process leading to radical cations are studied.  相似文献   
79.
It is commonly observed that the rate of enzymatic hydrolysis of solid cellulose substrates declines markedly with time. In this work the mechanism behind the rate reduction was investigated using two dominant cellulases of Trichoderma reesei: exoglucanase Cel7A (formerly known as CBHI) and endoglucanase Cel7B (formerly EGI). Hydrolysis of steam-pretreated spruce (SPS) was performed with Cel7A and Cel7B alone, and in reconstituted mixtures. Throughout the 48-h hydrolysis, soluble products, hydrolysis rates, and enzyme adsorption to the substrate were measured. The hydrolysis rate for both enzymes decreases rapidly with hydrolysis time. Both enzymes adsorbed rapidly to the substrate during hydrolysis. Cel7A and Cel7B cooperate synergistically, and synergism was approximately constant during the SPS hydrolysis. Thermal instability of the enzymes and product inhibition was not the main cause of reduced hydrolysis rates. Adding fresh substrate to substrate previously hydrolyzed for 24 h with Cel7A slightly increased the hydrolysis of SPS; however, the rate increased even more by adding fresh Cel7A. This suggests that enzymes become inactivated while adsorbed to the substrate and that unproductive binding is the main cause of hydrolysis rate reduction. The strongest increase in hydrolysis rate was achieved by adding Cel7B. An improved model is proposed that extends the standard endo-exo synergy model and explains the rapid decrease in hydrolysis rate. It appears that the processive action of Cel7A becomes hindered by obstacles in the lignocellulose substrate. Obstacles created by disordered cellulose chains can be removed by the endo activity of Cel7B, which explains some of the observed synergism between Cel7A and Cel7B. The improved model is supported by adsorption studies during hydrolysis.  相似文献   
80.
We describe the application of capillary electrophoresis to detect DNA fragments, obtained after amplifying a part of the apolipoprotein E (apoE) gene with polymerase chain reaction (PCR). Compared to conventional agarose slab gel electrophoresis (AGE), CE appears the method of choice with regard to resolution and sensitivity, to detect DNA fragments in the range of 20-100 base pairs. Especially discrimination between apoE2/E2 and apoE2/E3 genotypes is more reliable with CE than with AGE, this being of great clinical value in the diagnosis of familiary dysbetalipoproteinemia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号