<正>We describe a mobile molecular Doppler wind lidar(DWL) based on double-edge technique for wind measurement of altitudes ranging from 10 to 40 km.A triple Fabry-Perot etalon is employed as a frequency discriminator to determine the Doppler shift proportional to the wind velocity.The lidar operates at 355 nm with a 45-cm-aperture telescope and a matching azimuth-over-elevation scanner that provides full hemispherical pointing.To guarantee wind accuracy,a single servo loop is used to monitor the outgoing laser frequency to remove inaccuracies due to the frequency drift of the laser or the etalon.The standard deviation of the outgoing laser frequency drift is 6.18 MHz and the corresponding velocity error is 1.11 m/s.The wind profiles measured by the DWL are in good agreement with the results of the wind profile radar(WPR).Evaluation is achieved by comparing at altitudes from 2 to 8 km.The relative error of horizontal wind speed is from 0.8 to 1.8 m/s in the compared ranges.The wind accuracy is less than 6 m/s at 40 km and 3 m/s at 10 km. 相似文献
Air-breathing mode laser propulsion experiment with a long-pulse transversely excited(TE) CO2 laser is carried out,and its ignition problem is solved with the ignition needle of lightcraft.Owing to the ignition needle,an order of magnitude reduction in the ignition threshold is demonstrated.The result is compared with previous study.The momentum coupling coefficient is also measured in the experiment and its dependence upon laser pulse energy(6-14 J) and pulse width(20,32,and 40μs) is discussed. 相似文献
We study the uptake and distribution of transferrin (Tf)-conjugated CdSe/CdS/ZnS quantum dots (QDs) in single living HeLa cells with both fluorescence confocal microscopy and three-dimensional (3D) reconstruction technique. By increasing the co-incubation time or the dosage of QDs-Tf, we find that the uptake of QDs-Tf bioconjugates in the cells increases correspondingly, but with different uptake rates. Additionally, the distribution of QDs-Tf, in single live HeLa cells is time dependent. To our knowledge, this is the first study on quantitatively analyzing the uptake and distribution of bioconjugated QDs in single living cells. Such QDs nanoplatform can be further modified for developing biomedical evaluation tool in cancer diagnosis and targeted drug delivery. 相似文献
A detailed design of a picosecond laser oscillator is made by using optical resonance theory and semiconductor saturable absorber mirror continuous wave mode-locked technology. Mode parameters in the optical resonance including beam sizes on the laser crystal and mode locker are calculated. By theoretical calculations, 3.7 W output power is obtained at a pump power of 11 W and the optical to optical efficiency is 34% in the designed model of picosecond laser. Based on the detailed design, an experiment is proceeded and a picosecond laser oscillator of about 3.5 W output power with 10.6 W pump power is fabricated. The optical to optical efficiency of the laser is 33%, the pulse duration is about 20 ps, and the repetition rate is about 80.3 MHz. The oscillator presents long-term stability in the experiment. 相似文献
A series of chalcohalide glasses based on the composition 0.9 (Ge25 Ga5 S70)-0.1CsI doped with the different Tm3+ / Dy3+ ions ratio were synthesized by melt-quenching technique. The absorption spectra, and mid-infrared fluorescence of different glass samples under 800 nm laser excitation were measured. The results prove that, Tm3+ is an efficient sensitizer, which can enhance the Dy3+ : 2.9 microm fluorescence intensity significantly. A decrease in the intensity of 1.8 microm fluorescence and lifetimes of the Tm3+ : (3)F4 level occurred with increasing the concentration of Dy3+ ions from 0 to 1 Wt% where Tm3+ concentration was fixed to 0.5 Wt%. Also a wide spectral overlap between Tm+ : 1.8 microm emission and the absorption of Dy3+ : 6 H(15/2) --> (6)H(11/2) showed that the effective energy transfer between the two rare-earth ions was mainly attributed to the resonance energy from Tm3+: (3)F4 to Dy(3)+ : (6)H(11/2) level. 相似文献
We demonstrate that a sharper focal spot area can be generated (0.147λ(2)) by using an azimuthally polarized beam propagating through a vortex 0-2π phase plate than for radial polarization (0.17λ(2)) or for linear polarization (0.26λ(2)) under the same condition. Further research illustrates that such optimistic results can still be expected when condition limitations are liberalized. This will facilitate new approaches to get superresolution in confocal systems. 相似文献
We study the behavior of Airy beams propagating from a nonlinear medium to a linear medium. We show that an Airy beam initially driven by a self-defocusing nonlinearity experiences anomalous diffraction and can maintain its shape in subsequent propagation, but its intensity pattern and acceleration cannot persist when driven by a self-focusing nonlinearity. The unusual behavior of Airy beams is examined from their energy flow as well as the Brillouin zone spectrum of self-induced chirped photonic lattices. 相似文献
There is great interest in the generation of energy-tunable, bright, short-pulse X/γ-ray sources, which are required in various research fields. Laser–Compton scattering (LCS) is considered to be one of the most promising methods to implement this kind of X/γ-ray source. At the 100-MeV LINAC of the Shanghai Institute of Applied Physics, a 2-J, 8-ns, 1064-nm, Q-switched Nd:YAG laser is brought to a slanting collision at 40° (44°) with an 112-MeV, 0.9-ns (rms) relativistic electron beam. We measured the LCS X-ray energy spectrum with a peak energy of 31.73±0.22stat±1.64syst keV and a peak width (rms) of 0.74±0.26stat±0.03syst keV. This preliminary investigation was carried out to understand the feasibility of developing an energy-tunable X/γ-ray source. Based on this study, the future Shanghai Laser Electron Gamma Source (SLEGS) at the Shanghai Synchrotron Radiation Facility (SSRF) can be constructed to be not only an energy-tunable γ-ray source by guiding the laser incident angle from laser–Compton scattering, but also a high flux (~1010 photons/s or even higher) γ-ray source by adding a laser super-cavity. 相似文献
Narrow-line Seyfert 1 (NLS1) galaxies are believed to harbor low-mass black holes accreting at high rates, and they are therefore important targets when studying the nature of black hole growth, galaxy evolution, and accretion physics. We have rigorously studied the physical properties of a sample of NLS1 galaxies. We briefly review previous findings and present new results, including: (1) The locus of NLS1 galaxies on the MBH-σ plane, which we find to follow the relation of non-active galaxies after removing objects obviously dominated by outflows. (2) The presence of “blue outliers” which hint at extreme outflows as they would be predicted from merger models. (3) More subtle evidence for winds and outflows across the whole NLS1 population. (4) New correlations and trends which link black hole mass, Eddington ratio and physical parameters of the emission-line region. A new element is added to the eigenvector 1 space based on a principal component analysis, which aims at identifying the main drivers of AGN correlation properties.
This paper investigates the major structural parameters, such as crystal quality and strain state of (001)-oriented GaN thin films grown on sapphire substrates by metalorganic chemical vapour deposition, using an in-plane grazing incidence x-ray diffraction technique. The results are analysed and compared with a complementary out-of-plane x- ray diffraction technique. The twist of the GaN mosaic structure is determined through the direct grazing incidence t of (100) reflection which agrees well with the result obtained by extrapolation method. The method for directly determining the in-plane lattice parameters of the GaN layers is also presented. Combined with the biaxial strain model, it derives the lattice parameters corresponding to fully relaxed GaN films. The GaN epilayers show an increasing residual compressive stress with increasing layer thickness when the two dimensional growth stage is established, reaching to a maximum level of-0.89 GPa. 相似文献