全文获取类型
收费全文 | 105697篇 |
免费 | 3944篇 |
国内免费 | 3533篇 |
专业分类
化学 | 44505篇 |
晶体学 | 1134篇 |
力学 | 8042篇 |
综合类 | 234篇 |
数学 | 35164篇 |
物理学 | 24095篇 |
出版年
2024年 | 77篇 |
2023年 | 453篇 |
2022年 | 795篇 |
2021年 | 883篇 |
2020年 | 926篇 |
2019年 | 943篇 |
2018年 | 11063篇 |
2017年 | 10855篇 |
2016年 | 7103篇 |
2015年 | 1994篇 |
2014年 | 1674篇 |
2013年 | 2248篇 |
2012年 | 6005篇 |
2011年 | 12823篇 |
2010年 | 7283篇 |
2009年 | 7659篇 |
2008年 | 8408篇 |
2007年 | 10378篇 |
2006年 | 1773篇 |
2005年 | 2655篇 |
2004年 | 2602篇 |
2003年 | 2837篇 |
2002年 | 1872篇 |
2001年 | 976篇 |
2000年 | 905篇 |
1999年 | 728篇 |
1998年 | 692篇 |
1997年 | 585篇 |
1996年 | 668篇 |
1995年 | 500篇 |
1994年 | 443篇 |
1993年 | 434篇 |
1992年 | 375篇 |
1991年 | 338篇 |
1990年 | 280篇 |
1989年 | 247篇 |
1988年 | 225篇 |
1987年 | 186篇 |
1986年 | 199篇 |
1985年 | 201篇 |
1984年 | 143篇 |
1983年 | 100篇 |
1982年 | 112篇 |
1981年 | 91篇 |
1980年 | 98篇 |
1979年 | 102篇 |
1978年 | 74篇 |
1976年 | 53篇 |
1974年 | 51篇 |
1973年 | 70篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
The kinetics of C6H5 reactions with n‐CnH2n+2 (n = 3, 4, 6, 8) have been studied by the pulsed laser photolysis/mass spectrometric method using C6H5COCH3 as the phenyl precursor at temperatures between 494 and 1051 K. The rate constants were determined by kinetic modeling of the absolute yields of C6H6 at each temperature. Another major product C6H5CH3 formed by the recombination of C6H5 and CH3 could also be quantitatively modeled using the known rate constant for the reaction. A weighted least‐squares analysis of the four sets of data gave k (C3H8) = (1.96 ± 0.15) × 1011 exp[?(1938 ± 56)/T], and k (n‐C4H10) = (2.65 ± 0.23) × 1011 exp[?(1950 ± 55)/T] k (n‐C6H14) = (4.56 ± 0.21) × 1011 exp[?(1735 ± 55)/T], and k (n?C8H18) = (4.31 ± 0.39) × 1011 exp[?(1415 ± 65)T] cm3 mol?1 s?1 for the temperature range studied. For the butane and hexane reactions, we have also applied the CRDS technique to extend our temperature range down to 297 K; the results obtained by the decay of C6H5 with CRDS agree fully with those determined by absolute product yield measurements with PLP/MS. Weighted least‐squares analyses of these two sets of data gave rise to k (n?C4H10) = (2.70 ± 0.15) × 1011 exp[?(1880 ± 127)/T] and k (n?C6H14) = (4.81 ± 0.30) × 1011 exp[?(1780 ± 133)/T] cm3 mol?1 s?1 for the temperature range 297‐‐1046 K. From the absolute rate constants for the two larger molecular reactions (C6H5 + n‐C6H14 and n‐C8H18), we derived the rate constant for H‐abstraction from a secondary C? H bond, ks?CH = (4.19 ± 0.24) × 1010 exp[?(1770 ± 48)/T] cm3 mol?1 s?1. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 36: 49–56, 2004 相似文献
22.
Kuan‐Wei Lee Hong‐Cheu Lin 《Journal of polymer science. Part A, Polymer chemistry》2007,45(20):4564-4572
A series of new liquid crystalline homopolymers, copolymers, and block copolymers were polymerized from styrene‐macroinitiator ( SMi ) and methacrylates with pendent 4,4′‐bis(biphenyl)fluorene ( M1 ) and biphenyl‐4‐ylfluorene ( M2 ) groups through atom transfer radical polymerization (ATRP). The number‐average molecular weights (Mn) of polymers P1 ‐ P4 were 10,007, 14,852, 6,275, and 10,463 g mol?1 with polydispersity indices values of 1.21, 1.15, 1.31, and 1.22, respectively. All polymers exhibit the nematic phase. The thermal, mesogenic, and photoluminescent properties of all polymers were investigated. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4564–4572, 2007 相似文献
23.
Guey‐Sheng Liou Hung‐Yi Lin Yu‐Lun Hsieh Yi‐Lung Yang 《Journal of polymer science. Part A, Polymer chemistry》2007,45(21):4921-4932
N‐(4‐nitrophenyl)‐4′,4″‐bisformyl‐diphenylamine was synthesized from N‐(4‐nitrophenyl)‐diphenylamine by the Vilsmeier‐Haack reaction. Soluble aromatic poly(azomethine)s (PAMs) were prepared by the solution polycondensation of N‐(4‐nitrophenyl)‐4′,4″‐bisformyl‐diphenylamine and aromatic diamine in N‐methyl‐2‐pyrrolidone (NMP) at room temperature under reduced pressure. All the PAMs are highly soluble in various organic solvents, such as N,N‐dimethylacetamide (DMAc), chloroform (CHCl3), and tetrahydrofuran (THF). Differential scanning calorimetry (DSC) indicated that these PAMs had glass‐transition temperatures (Tgs) in the range of 170–230 °C, and a 10% weight‐loss temperatures in excess of 490 °C with char yield at 800 °C in nitrogen higher than 60%. These PAMs in NMP solution showed UV‐Vis charge‐transfer (CT) absorption at 405–421 nm and photoluminescence peaks around 462–466 nm with fluorescence quantum efficiency (ΦF) 0.10–0.99%. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of these PAMs can be determined from cyclic voltammograms as 4.86–5.43 and 3.31–3.34 eV, respectively. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4921–4932, 2007 相似文献
24.
Three novel zinc complexes [Zn(dbsf)(H2O)2] ( 1 ), [Zn(dbsf)(2,2′‐bpy)(H2O)]·(i‐C3H7OH) ( 2 ) and [Zn(dbsf)(DMF)] ( 3 ) (H2dbsf = 4,4′‐dicarboxybiphenyl sulfone, 2,2′‐bpy = 2,2′‐bipyridine, i‐C3H7OH = iso‐propanol, DMF = N,N‐dimethylformamide) were first obtained and characterized by single crystal X‐ray crystallography. Although the results show that all the complexes 1–3 have one‐dimensional chains formed via coordination bonds, unique three‐dimensional supramolecular structures are formed due to different coordination modes and configuration of the dbsf2? ligand, hydrogen bonds and π–π interactions. Iso‐propanol molecules are in open channels of 2 while larger empty channels are formed in 3 . As compared with emission band of the free H2dbsf ligand, emission peaks of the complexes 1–3 are red‐shifted, and they show blue emission, which originates from enlarging conjugation upon coordination. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
25.
26.
Ye Lin Feng Zeng‐Guo Zhao Yu‐Mei Wu Feng Chen Shi Wang Guo‐Qing 《Journal of polymer science. Part A, Polymer chemistry》2006,44(11):3650-3665
A novel cyclic ether monomer 3‐{2‐[2‐(2‐hydroxyethoxy)ethoxy]ethoxy‐methyl}‐3′‐methyloxetane (HEMO) was prepared from the reaction of 3‐hydroxymethyl‐3′‐methyloxetane tosylate with triethylene glycol. The corresponding hyperbranched polyether (PHEMO) was synthesized using BF3·Et2O as initiator through cationic ring‐opening polymerization. The evidence from 1H and 13C NMR analyses revealed that the hyperbranched structure is constructed by the competition between two chain propagation mechanisms, i.e. active chain end and activated monomer mechanism. The terminal structure of PHEMO with a cyclic fragment was definitely detected by MALDI‐TOF measurement. A DSC test implied that the resulting polyether has excellent segment motion performance potentially beneficial for the ion transport of polymer electrolytes. Moreover, a TGA assay showed that this hyperbranched polymer possesses high thermostability as compared to its liquid counterpart. The ion conductivity was measured to reach 5.6 × 10?5 S/cm at room temperature and 6.3 × 10?4 S/cm at 80 °C after doped with LiTFSI at a ratio of Li:O = 0.05, presenting the promise to meet the practical requirement of lithium ion batteries for polymer electrolytes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3650–3665, 2006 相似文献
27.
Tzong‐Ming Wu Shih‐Hsiang Lin 《Journal of polymer science. Part A, Polymer chemistry》2006,44(21):6449-6457
Size‐controllable polypyrrole (PPy)/multiwalled carbon nanotube (MWCNT) composites have been synthesized by in situ chemical oxidation polymerization directed by various concentrations of cationic surfactant cetyltrimethylammonium bromide (CTAB). Raman spectra, FTIR, SEM, and TEM were used to characterize their structure and morphology. These results showed that the composites are core (MWCNT)–shell (PPy) tubular structures with the thickness of the PPy layer in the range of 20–40 nm, depending on the concentration of CTAB. Raman and FTIR spectra of the composites are almost identical to those of PPy alone. The electrical conductivities of these composites are 1–2 orders of magnitude higher than those of PPy without MWCNTs. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6449–6457, 2006 相似文献
28.
Z. X. Li L. Q. Lin W. M. Zhang T. Wu J. L. Pu 《Journal of polymer science. Part A, Polymer chemistry》2006,44(3):1291-1298
A series of new polyimides were prepared via the polycondensation of (3‐amino‐2,4,6‐trimethylphenyl)‐(3′‐aminophenyl)methanone and aromatic dianhydrides, that is, 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA), 4,4′‐oxydiphthalic anhydride, 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride, and 2,2′‐bis(3,4‐dicarboxyphenyl) hexafluoropropane dianhydride. The structures of the polyimides were characterized by Fourier transform infrared and NMR measurements. The properties were evaluated by solubility tests, ultraviolet–visible analysis, differential scanning calorimetry, and thermogravimetric analysis. The two different meta‐position‐located amino groups with respect to the carbonyl bridge in the diamine monomer provided it with an unsymmetrical structure. This led to a restriction on the close packing of the resulting polymer chains and reduced interchain interactions, which contributed to the solubility increase. All the polyimides except that derived from BPDA had good solubility in strong aprotic solvents, such as N‐methyl‐2‐pyrrolidinone, N,N′‐dimethylacetamide, N,N‐dimethylformamide, and dimethyl sulfone, and in common organic solvents, such as cyclohexanone and chloroform. In addition, these polyimides exhibited high glass‐transition values and excellent thermal properties, with an initial thermal decomposition temperature above 470 °C and glass‐transition temperatures in the range of 280–320 °C. The polyimide films also exhibited good transparency in the visible‐light region, with transmittance higher than 80% at 450 nm and a cutoff wavelength lower than 370 nm. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1291–1298, 2006 相似文献
29.
This study describes the preparation of polypyrrole (PPy)/multiwalled carbon nanotube (MWNT) composites by in situ chemical oxidative polymerization. Various ratios of MWNTs, which served as hard templates, were first dispersed in aqueous solutions with the surfactant cetyltrimethylammonium bromide to form micelle/MWNT templates and overcome the difficulty of MWNTs dispersing into insoluble solutions of pyrrole monomer, and PPy was then synthesized via in situ chemical oxidative polymerization on the surface of the templates. Raman spectroscopy, Fourier transform infrared (FTIR), field‐emission scanning electron microscopy (FESEM), and high‐resolution transmission electron microscopy (HRTEM) were used to characterize the structure and morphology of the fabricated composites. Structural analysis using FESEM and HRTEM showed that the PPy/MWNT composites were core (MWNT)–shell (PPy) tubular structures. Raman and FTIR spectra of the composites were almost identical to those of PPy, supporting the idea that MWNTs served as the core in the formation of a coaxial nanostructure for the composites. The conductivities of these PPy/MWNT composites were about 150% higher than those of PPy without MWNTs. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1413–1418, 2006 相似文献
30.