首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6447篇
  免费   377篇
  国内免费   31篇
化学   4903篇
晶体学   29篇
力学   160篇
综合类   1篇
数学   1023篇
物理学   739篇
  2022年   37篇
  2021年   57篇
  2020年   81篇
  2019年   140篇
  2018年   66篇
  2017年   65篇
  2016年   237篇
  2015年   236篇
  2014年   231篇
  2013年   384篇
  2012年   301篇
  2011年   318篇
  2010年   282篇
  2009年   286篇
  2008年   324篇
  2007年   274篇
  2006年   259篇
  2005年   233篇
  2004年   270篇
  2003年   215篇
  2002年   277篇
  2001年   151篇
  2000年   142篇
  1999年   71篇
  1998年   65篇
  1997年   77篇
  1996年   87篇
  1995年   63篇
  1994年   73篇
  1993年   71篇
  1992年   67篇
  1991年   42篇
  1990年   46篇
  1989年   47篇
  1988年   42篇
  1987年   41篇
  1986年   39篇
  1985年   47篇
  1984年   65篇
  1983年   56篇
  1982年   71篇
  1981年   72篇
  1980年   74篇
  1979年   82篇
  1978年   78篇
  1977年   83篇
  1976年   76篇
  1975年   74篇
  1974年   75篇
  1973年   53篇
排序方式: 共有6855条查询结果,搜索用时 15 毫秒
741.
An iodine-catalyzed direct cycloalkenylation of dihydroquinolines and arylamines has been developed. This method consists of a Friedel–Crafts reaction between dihydroquinolines (or arylamines) and cyclic ketones in which the double bond is selectively generated throughout the course of the reaction resulting in a direct cycloalkenylation, under neat conditions.  相似文献   
742.
The literature on oxidation kinetics of polyamides and model compounds has been reviewed in order to try to extract suitable information for non-empirical kinetic modeling. Polyamide characteristics are systematically compared to polyolefin ones, these latter being more extensively studied. From kinetic analysis point of view, it is shown that oxidation attacks predominantly α amino methylenes of which C–H bond is considerably weaker than the other methylenes. As a result, propagation by H abstraction is considerably faster in polyamides than in polyethylene for instance. Termination by radical combination is also very fast. Another cause of PA oxidizability is the instability of α amino hydroperoxides linked to the inductive effect of nitrogen. This instability is responsible for many key features of oxidation kinetics especially the absence of induction period.  相似文献   
743.
744.
745.
Boronic acids (R‐B(OH)2) are a family of molecules that have found a large number of applications in materials science. In contrast, boronate anions (R‐B(OH)3?) have hardly been used so far for the preparation of novel materials. Here, a new crystalline phase involving a boronate ligand is described, Ca[C4H9‐B(OH)3]2, which is then used as a basis for the establishment of the spectroscopic signatures of boronates in the solid state. The phase was characterized by IR and multinuclear solid‐state NMR spectroscopy (1H, 13C, 11B and 43Ca), and then modeled by periodic DFT calculations. Anharmonic OH vibration frequencies were calculated as well as NMR parameters (by using the Gauge Including Projector Augmented Wave—GIPAW—method). These data allow relationships between the geometry around the OH groups in boronates and the IR and 1H NMR spectroscopic data to be established, which will be key to the future interpretation of the spectra of more complex organic–inorganic materials containing boronate building blocks.  相似文献   
746.
Overhanging carboxylic acid porphyrins have revealed promising ditopic ligands offering a new entry in the field of supramolecular coordination chemistry of porphyrinoids. Notably, the adjunction of a so‐called hanging‐atop (HAT) PbII cation to regular PbII porphyrin complexes allowed a stereoselective incorporation of the N‐core bound cation, and an allosterically controlled Newton’s cradle‐like motion of the two PbII ions also emerged from such bimetallic complexes. In this contribution, we have extended this work to other ligands and metal ions, aiming at understanding the parameters that control the HAT PbII coordination. The nature of the N‐core bound metal ion (ZnII, CdII), the influence of the deprotonation state of the overhanging COOH group and the presence of a neutral ligand on the opposite side (exogenous or intramolecular), have been examined through 1H NMR spectroscopic experiments with the help of radiocrystallographic structures and DFT calculations. Single and bis‐strap ligands have been considered. They all incorporate a COOH group hung over the N‐core on one side. For the bis‐strap ligands, either an ester or an amide group has been introduced on the other side. In the presence of a base, the mononuclear ZnII or CdII complexes incorporate the carbonyl of the overhanging carboxylate as apical ligand, decreasing its availability for the binding of a HAT PbII. An allosteric effector (e.g., 4‐dimethylaminopyridine (DMAP), in the case of a single‐strap ligand) or an intramolecular ligand (e.g., an amide group), strong enough to compete with the carbonyl of the hung COO?, is required to switch the N‐core bound cation to the opposite side with concomitant release of the COO?, thereby allowing HAT PbII complexation. In the absence of a base, ZnII or CdII binds preferentially the carbonyl of the intramolecular ester or amide groups in apical position rather than that of the COOH. This better preorganization, with the overhanging COOH fully available, is responsible for a stronger binding of the HAT PbII. Thus, either allosteric or acid–base control is achieved through stereoselective metalation of ZnII or CdII. In the latter case, according to the deprotonation state of the COOH group, the best electron‐donating ligand is located on one or the other side of the porphyrin (COO?>CONHR>COOR>COOH): the lower affinity of COOH for ZnII and CdII, the higher for a HAT PbII. These insights provide new opportunities for the elaboration of innovative bimetallic molecular switches.  相似文献   
747.
The galactopeptide dendrimer GalAG2 ((β‐Gal‐OC6H4CO‐Lys‐Pro‐Leu)4(Lys‐Phe‐Lys‐Ile)2Lys‐His‐Ile‐NH2) binds strongly to the Pseudomonas aeruginosa (PA) lectin LecA, and it inhibits PA biofilms, as well as disperses already established ones. By starting with the crystal structure of the terminal tripeptide moiety GalA‐KPL in complex with LecA, a computational mutagenesis study was carried out on the galactotripeptide to optimize the peptide–lectin interactions. 25 mutants were experimentally evaluated by a hemagglutination inhibition assay, 17 by isothermal titration calorimetry, and 3 by X‐ray crystallography. Two of these tripeptides, GalA‐KPY (dissociation constant (KD)=2.7 μM ) and GalA‐KRL (KD=2.7 μM ), are among the most potent monovalent LecA ligands reported to date. Dendrimers based on these tripeptide ligands showed improved PA biofilm inhibition and dispersal compared to those of GalAG2 , particularly G2KPY ((β‐Gal‐OC6H4CO‐Lys‐Pro‐Tyr)4(Lys‐Phe‐Lys‐Ile)2Lys‐His‐Ile‐NH2). The possibility to retain and even improve the biofilm inhibition in several analogues of GalAG2 suggests that it should be possible to fine‐tune this dendrimer towards therapeutic use by adjusting the pharmacokinetic parameters in addition to the biofilm inhibition through amino acid substitutions.  相似文献   
748.
The nonlinear properties and the photophysical behavior of two π‐conjugated chromophores that incorporate an electron‐deficient pyrimidine core (A) and γ‐methylenepyrans as terminal donor (D) groups have been thoroughly investigated. Both dipolar and quadrupolar branching strategies are explored and rationalized on the basis of the Frenkel exciton model. Even though a cooperative effect is clearly observed if the dimensionality is increased, the nonlinear optical (NLO) response of this series is moderate if one considers the nature of the D/A couple and the size of the chromophores (as measured by the number of π electrons). This effect was attributed to a disruption in the electronic conjugation within the dyes’ scaffold for which the geometry deviates from planarity owing to a noticeable twisting of the pyranylidene end‐groups. This latter structural parameter also has a strong influence on the excited‐state dynamics, which leads to a very efficient fluorescence quenching.  相似文献   
749.
Control of the ion internal energy in mass spectrometry is needed to establish a workable mass spectral library. The purpose of this study is to understand and to compare the pressure effects on the collision‐induced dissociation (CID) spectrum pattern recorded using triple quadrupole instruments. The monoprotonated Leucine enkephalin [YGGFL, H+] was used as a thermometer molecule to calibrate the electrospray ionization (ESI) and the CID internal energies deposited on the molecular species and the time scale of ion decompositions. The survival yield and the ratio of a4/b4 fragment ions were mainly monitored. The energy uptake for the ESI source geometry used in our study has no impact on the CID spectrum fingerprint. The collision cell pressure for the [YGGFL, H+] has a major influence on the SY curves slope and on the experimental time scale. To demonstrate the pressure effect on internal energy distribution, three models (threshold, thermal and collisional) based on RRKM theory were built using the Masskinetics software. As a result, the limit of each model is discussed, and the investigation demonstrates that the thermal model, using truncated Maxwell‐Boltzmann internal energy distribution, is well‐suited for simulating the experimental data at high pressure widely used in the analytical conditions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
750.
Hyphenated techniques and especially ultra‐high performance liquid chromatography‐mass spectrometry (UHPLC‐MS) are nowadays widely employed in natural products research. However, the complex nature of plant extracts complicates considerably the analysis and the identification of their constituents. Nevertheless, new MS analyzers with increased resolving power and accuracy such as the orbital trap (Orbitrap) could facilitate drastically this process. The objective of this study is the development of a new structure‐oriented approach based on fast UHPLC‐high‐resolution (HR)MS and HRMS/MS methodologies for the identification of isoflavonoids in crude extracts. In addition, aims to assist dereplication procedures, to decrease the laborious isolation steps and orient the focused isolation of compounds of interest. As a proof of concept, the methanol extract of the stem bark of Amphimas pterocarpoides (Leguminosae) was selected. Based on chromatographic (retention time, polarity) and spectrometric features (ultraviolet spectra, accurate m/z, proposed elemental composition, ring double bond equivalent, and relative isotopic abundance) as well as HRMS/MS spectra, several isoflavonoids were identified. In order to verify the proposed structures, 11 isoflavonoids were selectively isolated and unambiguously identified using 1&2D nuclear magnetic resonance techniques. Moreover, the isolated isoflavonoids were studied in HRMS/MS level, employing electrospray ionization and atmospheric pressure chemical ionization sources, in both modes. Useful information regarding their fragmentation patterns was obtained, and characteristic diagnostic ions were defined for the identification of methoxylated isoflavones, dihydroisoflavones and 5‐hydroxylated isoflavonoids. Based on the current results, the proposed dereplication strategy was verified and could comprise a novel approach for the analysis of crude extracts in the future not only for isoflavonoids but also for other chemical classes of natural products. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号