首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   8篇
化学   46篇
力学   6篇
数学   13篇
物理学   15篇
  2023年   3篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   7篇
  2018年   3篇
  2017年   6篇
  2016年   8篇
  2015年   4篇
  2014年   1篇
  2013年   5篇
  2012年   9篇
  2011年   6篇
  2010年   7篇
  2009年   1篇
  2008年   3篇
  2007年   3篇
  2005年   3篇
  2003年   2篇
  2000年   2篇
  1987年   1篇
  1985年   1篇
排序方式: 共有80条查询结果,搜索用时 15 毫秒
71.
72.
Toughening amplification of the neat poly(vinyl chloride) (PVC) and its reinforced version containing 25 phr of the cellulose acetate (CA)‐compatibilized starch using methyl methacrylate‐butadiene‐styrene (MBS) core–shell particles was studied. The room temperature measured impact strength of the PVC showed mild increase up to 10 wt % with the addition of MBS particles. Then, the toughness enhanced discontinuously to super‐tough plateau regime. The room temperature measured impact strength of PVC containing 20 phr of MBS particles, however, was reduced by as much as 95% when it was filled with 25 phr of the CA‐compatibilized starch. In addition, the brittle–ductile transition (BDT) of the toughened PVC increased from 0 to 60 °C because of its reinforcement, even though the matrix number density of the core/shell particles remained almost constant. The decline in the impact strength and the rise in the BDT of the hybrid PVC system were attributed to the decrease in the shear deformable matrix and shear deformation propagation rate despite the increase in the process zone size. Maximum impact strength of the hybrid system at 60 °C (its BDT) increased to about 25% of the toughened PVC at its BDT (0 °C). The toughness amplification correlation of the toughened and hybrid PVC systems with their process zones fractional stress volumes under the impact load showed three regimes: quasi‐tough, transition, and super‐tough, which were superimposable on literature data regarding hybrid nylon 66 systems. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   
73.
74.
Smog chamber/FTIR techniques were used to measure k(Cl + HCF2OCF2OCF2‐CF2OCF2H) = k(Cl + HCF2O(CF2O)n(CF2CF2O)mCF2H) = (5.0 ± 1.4) × 10?17 cm3 molecule?1 s?1 in 700 Torr of N2/O2 diluent at 296 ± 1 K. The Cl‐initiated atmospheric oxidation of HCF2OCF2OCF2CF2OCF2H and the sample of HCF2O(CF2O)n(CF2CF2O)mCF2H used in this work gave COF2 in molar yields of (476 ± 36)% and (859 ± 63)%, respectively, with no other observable carbon containing products (i.e., essentially complete conversion of both hydrofluoropolyethers into COF2). The results are discussed with respect to the atmospheric chemistry and environmental impact of hydrofluoropolyethers of the general formula HCF2O(CF2O)n(CF2CF2O)mCF2H. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 819–825, 2008  相似文献   
75.
Each experimental method has a certain range of application, and so do the instruments for measuring dynamic interfacial tension and dilational rheology. While the capillary pressure tensiometry provides data for the shortest adsorption times starting from milliseconds at liquid/gas and tens of milliseconds at liquid/liquid interfaces, the drop profile tensiometry allows measurements in a time window from seconds to many hours. Although both methods together cover a time range of about eight orders of magnitude (10(-3) s to 10(5) s), not all surfactants can be investigated with these techniques in the required concentration range. The same is true for studies of the dilational rheology. While drop profile tensiometry allows oscillations between 10(-3) Hz and 0.2 Hz, which can be complemented by measurements with capillary pressure oscillating drops and the capillary wave damping method (up to 10(3) Hz) these six orders of magnitude in frequency are often insufficient for a complete characterization of interfacial dilational relaxations of surfactant adsorption layers. The presented analysis provides a guide to select the most suitable experimental method for a given surfactant to be studied. The analysis is based on a diffusion controlled adsorption kinetics and a Langmuir adsorption model.  相似文献   
76.
The products of Cl atom and OH radical initiated oxidation of CF3CFCH2 were studied in 700 Torr of N2/O2 diluent at 296 ± 1 K. The reactions of Cl atoms and OH radicals with CF3CFCH2 proceed via electrophilic addition to the double bond. The reaction with chlorine atoms proceeds 56 ± 5% via addition to the central carbon. The chlorine atom initiated oxidation of CF3CFCH2 gives CF3C(O)F in a molar yield which is indistinguishable from 100% and independent of [O2], and HC(O)Cl in a molar yield which increased from 30% to 59% as [O2] was increased from 3 to 700 Torr. The OH radical initiated oxidation of CF3CFCH2 gives CF3C(O)F as major product in a yield of 91 ± 6%. The results are discussed with respect to the atmospheric chemistry and environmental impact of CF3CFCH2.  相似文献   
77.
78.
Nanocomposites were prepared by adding 1–3 vol % multiwalled carbon nanotubes (MWCNTs) to polyamide 6 (PA6), polypropylene (PP), and their co‐continuous blends of 60/40 and 50/50 volume compositions. Because of the good interaction and interfacial adhesion to the PA6, nanotubes were disentangled and distributed evenly through nanocomposites containing PA6. In contrast, lack of active interactions between the matrix and the CNTs resulted in poor tube dispersion in PP. These observations were then verified by studying the rheology and electrical conductivity of their respective nanocomposites. Absence of percolated CNT clusters and possible wrapping of the tubes by PA6 resulted in low electrical conductivity of PA6/CNT nanocomposites. On the other hand, despite the weak dispersion of the tubes, electrical conductivities of PP/CNT nanocomposites were much higher than all other counterparts. This could be the result of good three‐dimensional distribution of the agglomerated bundles and secondary aggregation of tubes in PP. Adding CNTs to blends of PA6/PP (60/40 and 50/50) resulted in almost full localization of carbon nanotubes in PA6, leading to their higher effective concentration. At the same CNT loadings, the blend nanocomposites had three to seven orders of magnitude higher electrical conductivity than pure PA6. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 368–378  相似文献   
79.
In this study, for the first time, a deep eutectic solvent-based microwave-assisted extraction was combined with ionic liquid–based temperature controlled liquid phase microextraction for the extraction of several aflatoxins from cheese samples. Briefly, the analytes are extracted from cheese sample (3 g) into a mixture of 1.5 mL choline chloride:ethylene glycol deep eutectic solvent and 3.5 mL deionized water by exposing to microwave irradiations for 60 s at 180 W. The liquid phase was taken and mixed with 55 μL 1-hexyl-3-methylimidazolium hexafluorophosphate. By cooling the solution in the refrigerator centrifuge, a turbid state was obtained and the analytes were extracted into the ionic liquid droplets. The analytes were determined by high-performance liquid chromatography equipped with fluorescence detector. Low limits of detection (9–23 ng kg–1) and quantification (30–77 ng kg–1), high extraction recovery (66%–83%), acceptable enrichment factor (40–50), and good precision (relative standard deviations ≤ 5.2%) were obtained using the offered approach. These results reveal the high extraction capability of the method for determination of aflatoxins in the cheese samples. In this method, there was no need for organic solvents and it can be considered as green extraction method.  相似文献   
80.
An isocratic, reversed-phase liquid chromatographic method was developed for determination of tropicamide using atropine as an internal standard in a pharmaceutical dosage form. Tropicamide and atropine sulfate were separated using a microBondapak ODS (C18) column by isocratic elution of mobile phase with flow rate of 2.0 ml/min. The mobile phase composition was methanol-50 mM phosphate buffer (pH 4; 30:70, v/v). The eluate was monitored at 257 nm with detector range setting fixed at 0.01 AUFS. Under these conditions, the retention times were 4.81 min for atropine and 11.89 min for tropicamide. The standard calibration curve was linear over a sample concentration range from 2 to 300 microg/ml, with limit of detection of 0.15 microg/ml. The assay linearity was good (typically r2 = 0.9992) and the standard curves were linear in the detection range. The precision of the method (expressed by relative standard deviation) and the accuracy (mean error in percent) were <5% for both intra- and inter-day assays. Recovery at 80-120% of labeled claim ranged from 98.4 to 100.7% for tropicamide. The proposed method was satisfactorily applied to the determination of tropicamide in pharmaceutical preparation and stability indicating studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号