首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   236篇
  免费   3篇
化学   169篇
晶体学   1篇
力学   5篇
数学   28篇
物理学   36篇
  2023年   1篇
  2022年   4篇
  2021年   1篇
  2019年   3篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   9篇
  2012年   9篇
  2011年   6篇
  2010年   5篇
  2009年   5篇
  2008年   10篇
  2007年   19篇
  2006年   8篇
  2005年   12篇
  2004年   8篇
  2003年   6篇
  2002年   11篇
  2000年   2篇
  1999年   3篇
  1998年   4篇
  1997年   8篇
  1996年   6篇
  1995年   4篇
  1994年   5篇
  1993年   1篇
  1992年   4篇
  1991年   4篇
  1990年   6篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1985年   4篇
  1984年   6篇
  1983年   3篇
  1982年   5篇
  1981年   1篇
  1979年   7篇
  1978年   3篇
  1977年   6篇
  1976年   4篇
  1975年   6篇
  1974年   4篇
  1973年   5篇
  1971年   2篇
  1970年   3篇
排序方式: 共有239条查询结果,搜索用时 12 毫秒
81.
82.
83.
Several Schiff-base ligands readily form complexes with methyltrioxorhenium(VII) (MTO) by undergoing a hydrogen transfer from a ligand-bound OH group to a ligand N atom. The resulting complexes are stable at room temperature and can be handled and stored in air without problems. Due to the steric demands of the ligands they display distorted trigonal-bipyramidal structures in the solid state, as shown by X-ray crystallography, with the O(-) moiety binding to the Lewis acidic Re atom and the Re-bound methyl group being located either in cis or trans position to the Schiff base. In solution, however, the steric differences seem not to be maintained, as can be deduced from (17)O NMR spectroscopy. Furthermore, the Schiff-base ligands exchange with donor ligands. Nevertheless, the catalytic behaviour is influenced significantly by the Schiff bases coordinated to the MTO moiety, which lead either to high selectivities and good activities or to catalyst decomposition. A large excess of ligand, in contrast to the observations with aromatic N-donor ligands, is detrimental to the catalytic performance as it leads to catalyst decomposition.  相似文献   
84.
We show for the first time that atomically dispersed Rh cations on ceria, prepared by a high‐temperature atom‐trapping synthesis, are the active species for the (CO+NO) reaction. This provides a direct link with the organometallic homogeneous RhI complexes capable of catalyzing the dry (CO+NO) reaction. The thermally stable Rh cations in 0.1 wt % Rh1/CeO2 achieve full NO conversion with a turn‐over‐frequency (TOF) of around 330 h?1 per Rh atom at 120 °C. Under dry conditions, the main product above 100 °C is N2 with N2O being the minor product. The presence of water promotes low‐temperature activity of 0.1 wt % Rh1/CeO2. In the wet stream, ammonia and nitrogen are the main products above 120 °C. The uniformity of Rh ions on the support, allows us to detect the intermediates of (CO+NO) reaction via IR measurements on Rh cations on zeolite and ceria. We also show that NH3 formation correlates with the water gas shift (WGS) activity of the material and detect the formation of Rh hydride species spectroscopically.  相似文献   
85.
Ring opening metathesis polymerization (ROMP) of a series of low-strain cyclic olefins and their hydroxyl derivatives using second generation Hoveyda–Grubbs catalyst has been investigated. Additionally, density functional theory (DFT) calculations were performed to evaluate the ring strain energies of the cyclic olefins and their hydroxyl derivatives, coupled with kinetic studies for the ROMP reactions. It was found that among different ring size monomers, Cy8 having a relatively moderate ring strain energy in comparison with the other cyclic olefins, exhibited the highest monomer conversion. The effect of temperature (0, 10, 15, and 25 °C) and monomer concentration (1 M; 2.5 M and 5 M for Cy5 ; and 1 M and 5 M for Cy7 ) for the cyclic olefins Cy5 and Cy7 were investigated. In general, the experimental results for the kinetic ROMP studies obtained using complex HG2 correlate really well with the DFT calculations determined for the ring strain energies of the cyclic olefins. For comparison, DFT calculations predicted the following trend for the ring strain energies Cy8 > Cy5 > Cy7 > Cy6 , and the polymerizations carried out experimentally followed the same trend in terms of monomer conversion, with the exception of Cy5 and Cy7 at lower concentrations, which followed this trend Cy8 > Cy7 > Cy5 > Cy6 . © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3137–3145  相似文献   
86.
In this study, mono- and di-alkyl cationic surfactants were used to prepare organoclays through ion exchange and the prepared organoclays were characterised by X-ray diffraction (XRD) and thermogravimetric analysis (TG). Larger basal spacings were observed in the interlayer of the organoclays intercalated with DDDMA than organoclays intercalated with DDTMA. The DTG curves identify the thermal stability of organoclays intercalated with two different types of surfactants (DDTMA and DDDMA) and the different arrangements of the surfactant molecules intercalated in the montmorillonite. Both organoclays intercalated with organic surfactant molecules proved to be thermally stable at high temperature. This study provides an understanding of the structure and properties of organoclays, which will enhance the potential applications of organoclays in environmental remediation.  相似文献   
87.
Summary X-ray Diffraction Analysis of Corrosion Products on Electrochemically Polarized Copper Surface An investigation was undertaken to examine the feasibility of X-ray diffractometry for the identification and characterization of corrosion products formed, electrochemically, on copper surface in various aqueous media. The removal of the products from the metal surface was useful in overcoming serious interferences from the intense diffraction lines of copper and was most satisfactory for the identification of common film components such as cuprous oxide, cuprous chloride and cupric oxide. In addition, the results obtained for the surface film components by slow scan linear (or potentiodynamic) polarization agreed favourably with the X-ray diffraction analysis. The influence of the solution pH and temperature on the nature of the corrosion products was evident on the results obtained by both techniques. The dominance of cuprous oxide as the major film component at the low solution pH and of cupric oxide as the predominant species at the higher solution pH and higher temperature were also confirmed by both results.Work undertaken while at the School of Applied Chemistry, Western Australian Institute of Technology, W. A. 6102 (Australia).  相似文献   
88.
The structure of an ordered, ultrathin theta-Al(2)O(3) film grown on a NiAl(100) single-crystal surface was studied by Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and low-energy electron diffraction (LEED), and its interaction with water was investigated with temperature programmed desorption (TPD) and XPS. Our results indicate that H(2)O adsorption on the theta-Al(2)O(3)/NiAl(100) surface is predominantly molecular rather than dissociative. For theta(H)()2(O) < 1 ML (ML = monolayer), H(2)O molecules were found to populate Al(3+) cation sites to form isolated H(2)O species aligned in a row along the cation sites on the oxide surface with a repulsive interaction between them. For theta(H)()2(O) > 1 ML, three-dimensional ice multilayers were observed to form, which then desorb during TPD with approximate zero-order kinetics as expected. A small extent of H(2)O dissociation was observed to occur on the theta-Al(2)O(3)/NiAl(100) surface, which was attributed to the presence of a low concentration of oxygen atom vacancies. Titration of these defect sites with adsorbed H(2)O molecules revealed an estimated defect density of 0.05 ML for the theta-Al(2)O(3)/NiAl(100) system consistent with the ordered nature of the synthesized oxide film.  相似文献   
89.
Development of new generations of membranes with high degrees of permeabilities and controllable mass transport properties requires a fundamental understanding of the relationship between molecular structures and permeabilities. Initiation of interdisciplinary research in biology, biophysics, polymer and colloid chemistry is proposed to provide the insight to membrane transport processes at the molecular level. Mother nature's most talented transporter — the biological membrane — should inspire this endeavor. Following a survey of the properties of, and recognized transport mechanisms in, biomembranes, membrane-mimetic chemistry is introduced to serve as a bridge between biological and polymeric membranes. Surfactant aggregates — micelles, monolayers, organized multilayers (Langmuir—Blodgett films), bilayer lipid membranes (BLMs), vesicles and polymerized vesicles — are shown to be the media in membrane-mimetic chemistry. Properties of these organized surfactant assemblies are summarized. Emphasis is placed on the control of molecular transport in membrane-mimetic systems. Perspectives and prospectives of biomimetic membranology are discussed.  相似文献   
90.
The relative stabilities of a series of adenine and guanine tautomers have been calculated using anab initio Hartree-Fock-Roothaan SCF MO method. The calculated relative stabilities agree in general with the results of earlier semiempirical studies. According to the present study, tautomeric forms with regular Kekulé structure for the six-membered purine ring are the most stable. The amine-imine tautomerization of purine bases is not likely to be responsible for spontaneous mutations in DNA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号