首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   1篇
化学   56篇
力学   9篇
数学   4篇
物理学   14篇
  2022年   2篇
  2021年   5篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   9篇
  2012年   5篇
  2011年   7篇
  2010年   3篇
  2009年   7篇
  2008年   9篇
  2007年   6篇
  2006年   7篇
  2005年   4篇
  2003年   1篇
  2002年   2篇
  2000年   2篇
  1999年   1篇
  1996年   1篇
  1991年   1篇
  1986年   1篇
  1984年   1篇
排序方式: 共有83条查询结果,搜索用时 15 毫秒
41.
A set of poly(urea)urethanes (PUU), with different contents of amorphous hard segment and castor oil-derived crystalline polyol as soft segment, was prepared combining bulk and solution polymerizations. It is shown that both the soft segment crystallinity and hard segment glassy nature control the stiffness of the materials and that phase mixing at intermediate hard segment compositions produces softer materials. Upon yielding, PUU developed large plasticity associated to the nature of soft segments. At longer strains, PUU presented strain-induced crystallization related both to soft segments alignment and crystallization, leading to strong and tough materials, especially with high hard segment content compositions. Despite the hydrophobicity of the soft segments, the PUU with 65 wt% hard segment content was dispersable in water after quaternization with acetic acid. The high amount of urea groups in this quaternized PUU makes one think of these types of polymers as promising water soluble environmentally friendly strong adhesives, coatings, or water soluble polymeric electrolites.  相似文献   
42.
In the present work, the optimization of the extraction of antioxidant compounds from apple pomace using ultrasound technology as an environmentally friendly and intensification process was developed. Different sonication powers, extraction temperatures and extraction times were studied and their influence on extraction yield and characteristics of the extracted samples (total phenolic compounds, flavonoid content and antioxidant capacity) are presented. The elaborated experimental design and the analysis of Pareto and response surface diagrams allowed us to determine the optimal extraction conditions. The conditions that allow the maximum extraction of phenolic compounds were found at 20 min, 90 °C and 50% ultrasound amplitude. Nevertheless, at these conditions, the antioxidant capacity measured by DPPH decreased in the extracted samples.  相似文献   
43.
It has been recently demonstrated that a pump pulse can generate coherent charge fluctuations in a superconductor through a stimulated Raman process [Mansart, et al., Proc. Natl. Acad. Sci. USA 110, 4539 (2013)]. Here, we present a tutorial review of the basic phenomena involved and show how the technique bears a strong analogy with nuclear magnetic resonance and electron paramagnetic resonance. The reflectivity of the system gets modulated by the coherent charge fluctuation of the condensate. A resonance at the Mott scale allows to identify a high-energy excitation which is coupled to the superconducting quasiparticles.  相似文献   
44.
Hybrid DFT/classical molecular dynamics of the long‐lived triplet excited state of [Ru(bpy)3]2+ (bpy=2,2′‐bipyridine) in aqueous solution is used to investigate the solvent‐mediated electron localization and dynamics in the triplet metal‐to‐ligand charge‐transfer (MLCT) state. Our studies reveal a solvent‐induced breaking of the coordination symmetry with consequent localization of the photoexcited electron on one or two bipyridine units for the entire length of our simulation, which amounts to several picoseconds. Frequent electronic “hops” between the ligands constituting the pair are observed with a characteristic time of approximately half a picosecond.  相似文献   
45.
In this article we present a new photon echo set-up operating in the UV range and our first results of photon echo peak shift (PEPS) experiments of a small non-polar dye molecule, p-terphenyl (pTP), in three different solvents: ethanol, methanol and 2-propanol. The experiments show the feasibility of UV transient grating and photon echo measurements and highlight the sensitivity of this technique for the study of non-polar solvation dynamics. The transient grating experiments indicate a relaxation of the ground state hole of about 6 ps. The photon echo experiments show that while electronic dephasing occurs on timescales shorter than 100 fs, solvation dynamics timescales are in the picosecond regime, in agreement with the literature.  相似文献   
46.
A new ultraviolet band system identified as emission from the theoretically predicted but so far unobserved 2Φ state of NO trapped in an argon matrix is reported. The energy of the ν = 0 level is estimated to be 6.57 ± 0.015 or 6.785 ± 0.015 eV. The intensity distribution yields an internuclear distance of 1.415 ± 0.015 Å.  相似文献   
47.
Structural changes of the iron(II)-tris-bipyridine ([Fe(II)(bpy)(3)](2+)) complex induced by ultrashort pulse excitation and population of its short-lived (< or =0.6 ns) quintet high spin state have been detected by picosecond x-ray absorption spectroscopy. The structural relaxation from the high spin to the low spin state was followed over the entire lifetime of the excited state. A combined analysis of the x-ray-absorption near-edge structure and extended x-ray-absorption fine structure spectroscopy features delivers an Fe-N bond elongation of 0.2 A in the quintet state compared to the singlet ground state.  相似文献   
48.
We show a femtosecond fluorescence upconversion setup with broadband detection to measure time-resolved emission spectra in the 300-550 nm range, upon excitation between 250 and 300 nm, with a time resolution of 100 fs. We present time-resolved fluorescence emission spectra of 2,5-diphenyloxazole in solution, which demonstrate the capabilities of the setup.  相似文献   
49.
Very large molecular systems can be calculated with the so called CNDOL approximate Hamiltonians that have been developed by avoiding oversimplifications and only using a priori parameters and formulas from the simpler NDO methods. A new diagonal monoelectronic term named CNDOL/21 shows great consistency and easier SCF convergence when used together with an appropriate function for charge repulsion energies that is derived from traditional formulas. It is possible to obtain a priori molecular orbitals and electron excitation properties after the configuration interaction of single excited determinants with reliability, maintaining interpretative possibilities even being a simplified Hamiltonian. Tests with some unequivocal gas phase maxima of simple molecules (benzene, furfural, acetaldehyde, hexyl alcohol, methyl amine, 2,5 dimethyl 2,4 hexadiene, and ethyl sulfide) ratify the general quality of this approach in comparison with other methods. The calculation of large systems as porphine in gas phase and a model of the complete retinal binding pocket in rhodopsin with 622 basis functions on 280 atoms at the quantum mechanical level show reliability leading to a resulting first allowed transition in 483 nm, very similar to the known experimental value of 500 nm of "dark state." In this very important case, our model gives a central role in this excitation to a charge transfer from the neighboring Glu(-) counterion to the retinaldehyde polyene chain. Tests with gas phase maxima of some important molecules corroborate the reliability of CNDOL/2 Hamiltonians.  相似文献   
50.
The photochemistry of DNA systems is characterized by the ultraviolet (UV) absorption of π-stacked nucleobases, resulting in exciton states delocalized over several bases. As their relaxation sensitively depends on local stacking conformations, disentangling the ensuing electronic and structural dynamics has remained an experimental challenge, despite their fundamental role in protecting the genome from potentially harmful UV radiation. Here we use transient absorption and transient absorption anisotropy spectroscopy with broadband femtosecond deep-UV pulses (250–360 nm) to resolve the exciton dynamics of UV-excited adenosine single strands under physiological conditions. Due to the exceptional deep-UV bandwidth and polarization sensitivity of our experimental approach, we simultaneously resolve the population dynamics, charge-transfer (CT) character and conformational changes encoded in the UV transition dipoles of the π-stacked nucleotides. Whilst UV excitation forms fully charge-separated CT excitons in less than 0.3 ps, we find that most decay back to the ground state via a back-electron transfer. Based on the anisotropy measurements, we propose that this mechanism is accompanied by a structural relaxation of the photoexcited base-stack, involving an inter-base rotation of the nucleotides. Our results finally complete the exciton relaxation mechanism for adenosine single strands and offer a direct view into the coupling of electronic and structural dynamics in aggregated photochemical systems.

Despite its key role in DNA photochemistry, the decay mechanism of excitons in stacked bases has remained difficult to resolve. Ultrafast polarization spectroscopy now reveals a back-electron transfer and ultrafast base motions in adenosine strands.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号