首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   1篇
化学   29篇
力学   1篇
物理学   5篇
  2021年   3篇
  2019年   2篇
  2017年   4篇
  2016年   6篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   3篇
  2011年   1篇
  2008年   1篇
  2007年   2篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2001年   1篇
  1996年   1篇
  1975年   1篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
11.
Elemental selenium generated by the photobleaching of selenomerocyanine dyes forms conjugates with serum albumin and serum lipoproteins that are toxic to leukemia and selected solid tumor cells but well tolerated by normal CD34-positive hematopoietic stem and progenitor cells. Serum albumin and lipoproteins act as Trojan horses that deliver the cytotoxic entity (elemental selenium) to tumor cells as part of a physiological process. They exploit the fact that many tumors have an increased demand for albumin and/or low-density lipoprotein. Se(0)-protein conjugates are more toxic than selenium dioxide, sodium selenite, selenomethionine, or selenocystine. They are only minimally affected by drug resistance mechanism, and they potentiate the cytotoxic effect of ionizing radiation and several standard chemotherapeutic agents. The cytotoxic mechanism of Se(0)-protein conjugates is not yet fully understood. Currently available data are consistent with the notion that Se(0)-protein conjugates act as air oxidation catalysts that cause a rapid depletion of intracellular glutathione and induce apoptosis. Drugs modeled after our Se(0)-protein conjugates may prove useful for the local and/or systemic therapy of cancer.  相似文献   
12.
In acetate buffer media (pH 4.5–5.4) thiosulfate ion (S2O32?) reduces the bridged superoxo complex, [(NH3)4CoIII(μ‐NH2,μ‐O2)CoIII(NH3)4]4+ ( 1 ) to its corresponding μ‐peroxo product, [(NH3)4CoIII(μ‐NH2,μ‐O2)CoIII(NH3)4]3+ ( 2 ) and along a parallel reaction path, simultaneously S2O32? reacts with 1 to produce the substituted μ‐thiosulfato‐μ‐superoxo complex, [(NH3)4CoIII(μ‐S2O3,μ‐O2)CoIII(NH3)4]3+ ( 3 ). The formation of μ‐thiosulfato‐μ‐superoxo complex ( 3 ) appears as a precipitate which on being subjected to FTIR shows absorption peaks that support the presence of Co(III)‐bound S‐coordinated S2O32? group. In reaction media, 3 readily dissolves to further react with S2O32? to produce μ‐thiosulfato‐μ‐peroxo product, [(NH3)4CoIII(μ‐S2O3,μ‐O2)CoIII(NH3)4]2+ ( 4 ). The observed rate (k0) increases with an increase in [TThio] ([TThio] is the analytical concentration of S2O32?) and temperature (T), but it decreases with an increase in [H+] and the ionic strength (I). Analysis of the log At versus time data (A is the absorbance of 1 at time t) reveals that overall the reaction follows a biphasic consecutive reaction path with rate constants k1 and k2 and the change of absorbance is equal to {a1 exp(–k1t) + a2 exp(–k2t)}, where k1 > k2.  相似文献   
13.
Sustainable agricultural practices are still essential due to soil degradation and crop losses. Recently, the relationship between plants and nanoparticles (NPs) attracted scientists’ attention, especially for applications in agricultural production as nanonutrition. Therefore, the present research was carried out to investigate the effect of Fe3O4 NPs at low concentrations (0, 1, 10, and 20 mg/L) on three genotypes of barley (Hordeum vulgare L.) seedlings grown in hydroponic conditions. Significant increases in seedling growth, enhanced chlorophyll quality and quantity, and two miRNA expression levels were observed. Additionally, increased genotoxicity was observed in seedlings grown with NPs. Generally, Fe3O4 NPs at low concentrations could be successfully used as nanonutrition for increasing barley photosynthetic efficiency with consequently enhanced yield. These results are important for a better understanding of the potential impact of Fe3O4 NPs at low concentrations in agricultural crops and the potential of these NPs as nanonutrition for barley growth and yield enhancement. Future studies are needed to investigate the effect of these NPs on the expression of resistance-related genes and chlorophyll synthesis-related gene expression in treated barley seedlings.  相似文献   
14.
Beta-Cyclodextrin (beta-CD) monolayers have been immobilized in microchannels. The host-guest interactions on the beta-CD monolayers inside the channels were comparable to the interactions on beta-CD monolayers on planar surfaces, and a divalent fluorescent guest attached with a comparable binding strength. Proteins were attached to these monolayers inside microchannels in a selective manner by employing a strategy that uses streptavidin and orthogonal linker molecules. The design of the chip, which involved a large channel that splits into four smaller channels, allowed the channels to be addressed separately and led to the selective immobilization of antibodies. Experiments with labeled antibodies showed the selective immobilization of these antibodies in the separate channels.  相似文献   
15.
Transition Metal Chemistry - The chlorophenols (CPs), 4-chlorophenol (4-CP), 2,4-dichlorophenol (2,4-DCP) and 2,4,6-trichlorophenol (2,4,6-TCP), are potent environmental hazards. They can be...  相似文献   
16.
In alkaline media, well‐characterized gelatin‐stabilized palladium (GPd) nanoparticles catalyze the reduction of the azo group containing pollutant dye, Acid Orange 7 (AO7) by sodium borohydride (NaBH4) to 1‐amino‐2‐napthol and sulfanilic acid. Kinetic observations and detailed FTIR studies suggests that the reaction follows Langmuir–Hinshelwood kinetic model, where during the reaction both AO7 and borohydride are adsorbed on the GPd surface. Plots of lnko versus ln[AO7] or ln[NaBH4] show that the order of reaction with respect to AO7 and NaBH4 remains almost same over different molar ratios of [NaBH4]/[AO7]. The catalyzed reaction shows an initial induction period (t0) due to a surface‐restructuring process of GPd nanoparticles, and (1/t0) can be defined as the rate of surface restructuring. The activation energy of the catalyzed reaction and energy of the surface‐restructuring process of GPd are estimated as 22 ± 3 and 25 ± 7 kJ M?1, respectively.  相似文献   
17.
A host-[2]rotaxane was constructed by converting a diaminophenylcalix[4]arene into a [2]rotaxane using the DCC-rotaxane method (Zehnder, D.; Smithrud, D. B. Org. Lett. 2001, 16, 2485-2486). N-Ac-Arg groups were attached to the dibenzo-24-crown-8 ring of the rotaxane to provide a convergent functional group. To demonstrate the advantage provided by the rotaxane architecture for recognition of guests that contain a variety of functional groups, association constants (K(A)) for N-Ac-Trp, indole, N-Ac-Gly, fluorescein, 1-(dimethylamino)-5-naphthalenesulfonate, and pyrene bound to the [2]rotaxane were determined by performing (1)H NMR and fluorescence spectroscopic experiments. The host-[2]rotaxane had the highest affinity for fluorescein with a K(A) = 4.6 x 10(6) M(-)(1) in a 98/2 buffer (1 mM phosphate, pH 7)/DMSO solution. A comparison of K(A) values demonstrates that both the aromatic pocket and ring of the host-[2]rotaxane contribute binding free energy for complexation. Association constants were also derived for the same guests bound to the diaminophenylcalix[4]arene and to a diphenylcalix[4]arene that contained arginine residues displayed in a nonconvergent fashion. The host-[2]rotaxane provides higher affinity and specificity for most guests than the host with divergent N-Ac-Arg groups of the one that only has an aromatic pocket. For example, the K(A) for the complex of the host-[2]rotaxane and fluorescein in the DMSO/water mixture is more than 2 orders of magnitude greater than association constants derived for the other hosts.  相似文献   
18.
19.
Using a precipitation technique, silicas were obtained from sodium metasilicate solution employing an acidic agent. Alcohol solutions were used in the process of production of highly dispersed silicas, which resulted in partial blocking of the silica surface silanol groups. Moreover, studies on morphology and microstructure using transmission electron microscopy and scanning electron microscopy were performed. The size distributions of primary particles and aggregate and agglomerate structures were determined using a ZetaPlus instrument using the dynamic light scattering method. The structure and molecular dynamics of the nanocomposite, consisting of poly (p-phenylene sulfide) (PPS) and of the precipitated silica, were studied using atomic force microscopy and nuclear magnetic resonance. It was proved that during annealing the fragmentation of PPS agglomerates takes place. This phenomena probably resulted from repulsion forces existing between agglomerates and aggregates. Fragmentation in the polymer network probably resulted from repulsion forces between agglomerates and smaller aggregates. Received: 7 November 2000 Accepted: 5 April 2001  相似文献   
20.
A well known chaotic mapping in symbol space is a shift mapping.However,other chaotic mappings in symbol space exist too.The basic change is to consider the process not only at a set of times which are equally spaced,say at unit time apart(a shift mapping),but at a set of times which are not equally spaced,say if the unit time can not be fixed.The increasing mapping as a generalization of the shift mapping and the k-switch mapping are introduced.The increasing and k-switch mappings are chaotic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号