首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   1篇
化学   45篇
力学   1篇
  2014年   1篇
  2012年   3篇
  2011年   4篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   7篇
  2004年   4篇
  2003年   8篇
  2002年   5篇
  2001年   6篇
  1997年   1篇
  1996年   1篇
排序方式: 共有46条查询结果,搜索用时 250 毫秒
41.
Three 1-(2-nitrophenyl)ethyl-caged phospho-amino acids have been synthesized for use in standard N(alpha)-fluorenylmethoxycarbonyl-based solid-phase peptide synthesis (SPPS). The most common naturally occurring phospho-amino acids, serine, threonine, and tyrosine, were prepared as protected caged building blocks by modification with a unique phosphitylating reagent. In previous work, caged phospho-peptides were made using an interassembly approach (Rothman, D. M.; Vazquez, M. E.; Vogel, E. M.; Imperiali, B. Org. Lett. 2002, 4, 2865-2868). However, this technique is limited to creating peptides without oxidation sensitive residues C-terminal to the amino acid to be modified and the methodology involves synthetic manipulations on the solid phase that may limit the utilization of the methodology. Herein we report the facile synthesis of N-alpha-Fmoc-phospho(1-nitrophenylethyl-2-cyanoethyl)-L-serine 1, N-alpha-Fmoc-phospho(1-nitrophenylethyl-2-cyanoethyl)-L-threonine 2, and N-alpha-Fmoc-phospho(1-nitrophenylethyl-2-cyanoethyl)-L-tyrosine 3. These building blocks allow the synthesis of any caged phospho-peptide sequence using standard Fmoc-based SPPS procedures.  相似文献   
42.
Oligosaccharyl transferase (OT) catalyzes the co-translational transfer of a dolichol-linked tetradecasaccharide (Dol-PP-GlcNAc(2)Man(9)Glc(3), 1a) to an asparagine side chain of a nascent polypeptide inside the lumen of the endoplasmic reticulum (ER). The glycosyl acceptor requires an Asn-Xaa-Thr/Ser sequon, where Xaa can be any natural amino acid except proline, for N-linked glycosylation to occur. To address the substrate specificity of the glycosyl donor, three unnatural dolichol-linked disaccharide analogues (Dol-PP-GlcNTFA-GlcNAc 1c, Dol-PP-2DFGlc-GlcNAc 1d, and Dol-PP-GlcNAc-Glc 1e) were synthesized and evaluated as substrates or inhibitors for OT from yeast. The synthetic analogue Dol-PP-GlcNAc-Glc 1e, with substitution in the distal sugar, was found to be a substrate (K(m)(app)() = 26 microM) for OT. On the other hand, the analogues Dol-PP-GlcNTFA-GlcNAc 1c (K(i) = 154 microM) and Dol-PP-2DFGlc-GlcNAc 1d (K(i) = 252 microM), with variations in the proximal sugar, were inhibitors for OT. The dolichol-linked monosaccharide Dol-PP-GlcNAc 3 was found to be the minimum unit for glycosylation to occur.  相似文献   
43.
The chemical synthesis and biological activity of undecaprenyl pyrophosphate bacillosamine (Und-PP-Bac), an obligatory intermediate in the asparagine-linked glycosylation pathway of Campylobacter jejuni, are reported. The key transformation involves the coupling of bacillosamine phosphate and undecaprenyl phosphate. The synthetic Und-PP-Bac can be used to investigate the activity of the enzyme PglA, which catalyzes the first glycosyl transfer in substrate biosynthesis for N-linked protein glycosylation in the pathogenic gram-negative bacterium. The availability of this synthetic substrate makes it possible to access polyprenyl-linked oligosaccharides, such as the GalNAc-alpha-1,3-bacillosamine-alpha-1-PP-Und intermediate, that will enable exploration of the remaining enzymes in the prokaryotic glycosylation pathway. Study of the bacterial glycosylation system will provide insight into the corresponding eukaryotic process, which is currently poorly understood.  相似文献   
44.
45.
The discovery of a discretely folded homotrimeric betabetaalpha motif (BBAT1) was recently reported (J. Am. Chem. Soc. 2001, 123, 1002-1003). Herein the design, synthesis, and analysis of a small library of peptides which led to the isolation of BBAT1 is described. betabetaalpha peptides based on the monomeric sequence of BBA5 (Folding Des. 1998, 120, 95-103) were synthesized to include the anthranilic acid/nitrotyrosine fluorescence quenching pair to rapidly detect interpeptide association. In the first generation of peptides synthesized, truncations in the loop region connecting the beta-hairpin to the alpha-helix revealed that a two-residue deletion in the loop promoted an interpeptide association as detected by fluorescence quenching. An additional library of 22 loop-truncated betabetaalpha peptides was subsequently synthesized to include a variety of sequence mutations in an effort to enhance the observed peptide-peptide binding. From the fluorescence quenching screen, peptide B2 was found to possess the strongest fluorescence-quenching response, indicative of a strong peptide-peptide association. Due the poor solubility of peptide B2, the S-methylated cysteine at position 9 in the loop was substituted with a glycine to generate peptide BBAT1 which possessed greatly improved water solubility and formed discrete trimers. The successful design of this oligomeric betabetaalpha structure will likely aid the design of more complex alpha-beta superstructures and further our understanding of the factors controlling protein-protein interactions at alpha-beta protein interfaces.  相似文献   
46.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号