首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   168篇
  免费   11篇
  国内免费   2篇
化学   119篇
晶体学   1篇
力学   17篇
数学   9篇
物理学   35篇
  2023年   1篇
  2022年   10篇
  2021年   12篇
  2020年   15篇
  2019年   10篇
  2018年   10篇
  2017年   10篇
  2016年   10篇
  2015年   9篇
  2014年   14篇
  2013年   11篇
  2012年   8篇
  2011年   16篇
  2010年   9篇
  2009年   7篇
  2008年   5篇
  2007年   6篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1990年   2篇
  1988年   1篇
  1981年   2篇
排序方式: 共有181条查询结果,搜索用时 78 毫秒
161.
In this study, the Nervier–Stokes equations for incompressible flows, modified by the artificial compressibility method, are investigated numerically. To calculate the convective fluxes, a new high‐accuracy characteristics‐based (HACB) scheme is presented in this paper. Comparing the HACB scheme with the original characteristic‐based method, it is found that the new proposed scheme is more accurate and has faster convergence rate than the older one. The second order averaging scheme is used for estimating the viscose fluxes, and spatially discretized equations are integrated in time by an explicit fourth‐order Runge–Kutta scheme. The lid driven cavity flow and flow in channel with a backward facing step have been used as benchmark problems. It is shown that the obtained results using HACB scheme are in good agreement with the standard solutions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
162.

This article presents a novel triple-pressure combined cycle power plant (CCPP) with a heat recovery steam generator (HRSG) configured with heat exchangers of multiple pressure levels, same as the real case. In addition, combustion chamber steam injection is added to the top cycle in order to reduce hazardous emissions. The research investigates energy, exergy, economic, and environmental aspects of the system to initiate sustainable development in said areas. A thorough parametric study is carried out to evaluate the effects of steam injection and other decision variable on emissions and system performance. Then, the total cost rate and the CO2 index are minimized while maximizing the second law efficiency via a tri-objective optimization using the genetic algorithm. The outcome of the economic analysis is that the HRSG has the maximum total cost rate among all the components, namely 0.1673 $/s. The environmental impact  assessments indicate that the CO2 and NO emission has considerable molar fractions of 0.035 and 6.88?×?10?4, respectively. As a result of the tri-objective optimization, a 3D Pareto Frontier is presented, which pointed out the maximum attainable exergy efficiency is 50.32%, as well as the minimum total cost rates of 8.04 $/s and CO2 index of 0.34 kg/kWh. Finally, the scatter distribution of major decision variables revealed the optimum range of decision variables in which the optimum points of the Pareto Frontier are obtained. Accordingly, the scatter distribution showed that 46 kg s?1 is the optimum value for steam injection flow rate in terms of efficiency, cost and emission optimization.

  相似文献   
163.
Journal of Thermal Analysis and Calorimetry - This paper investigated an optimized-microphone array configuration based on a genetic algorithm (GA) to improve the map resolution of output...  相似文献   
164.
The complexation processes among Li+, Na+, K+, and NH4 + cations with the macrocyclic ligand, 15-crown-5 (15C5) have been studied in acetonitrile–methanol binary mixtures at different temperatures using conductometric method. The stability constants of the resulting 1:1 complexes were calculated from the computer fitting of the molar conductance–mole ratio data at various temperatures. The values of thermodynamic parameters ( $ \Updelta H_{\text{c}}^{^\circ } $ and $ \Updelta S_{\text{c}}^{^\circ } $ ) for the formation of the complexes were obtained from temperature dependence of the stability constants of complexes using van’t Hoff plots. In addition, a theoretical study has been carried out using density functional theory to obtain the stability of the complexes and the geometrical structure of the 15C5 and its complexes with Li+, Na+, K+ and NH4 + cations in the gas phase. We compared the experimental data with those obtained by quantum chemistry calculations to investigate the effect of the solvent on complexation process.  相似文献   
165.
It is well known that biochemical and biotechnological processes are strongly dependent and affected by a variety of physico‐chemical parameters such as pH value, temperature, pressure and electrolyte conductivity. Therefore, these quantities have to be monitored or controlled in order to guarantee a stable process operation, optimization and high yield. In this work, a sensor chip for the multiparameter detection of three physico‐chemical parameters such as electrolyte conductivity, pH and temperature is realized using barium strontium titanate (BST) as multipurpose material. The chip integrates a capacitively coupled four‐electrode electrolyte‐conductivity sensor, a capacitive field‐effect pH sensor and a thin‐film Pt‐temperature sensor. Due to the multifunctional properties of BST, it is utilized as final outermost coating layer of the processed sensor chip and serves as passivation and protection layer as well as pH‐sensitive transducer material at the same time. The results of testing of the individual sensors of the developed multiparameter sensor chip are presented. In addition, a quasi‐simultaneous multiparameter characterization of the sensor chip in buffer solutions with different pH value and electrolyte conductivity is performed. To study the sensor behavior and the suitability of BST as multifunctional material under harsh environmental conditions, the sensor chip was exemplarily tested in a biogas digestate.  相似文献   
166.
Microbeam dynamics is important in MEMS filters and resonators. In this research, the effect of piezoelectric actuation on the resonance frequencies of a piezoelectrically actuated capacitive clamped-clamped microbeam is studied. The microbeam is sandwiched with piezoelectric layers throughout its entire length. The lower piezoelectric layer is exposed to a combination of a DC and a harmonic excitation voltage. The DC electrostatic voltage is applied to prevent the doubling of the excitation frequency. The traditional resonators are tuned using DC electrostatic actuation, which tunes the resonance frequency only in backward direction on the frequency domain. The proposed model enables tuning the resonance frequencies in both forward and backward directions. For small amplitudes of harmonic excitation and high enough quality factor, the frequency response curves obtained by the shooting method are validated with those of the multiple time scales technique. Unlike the perturbation technique, which imposes limitation on both the amplitude of the harmonic excitation and the quality factor to be applicable, the shooting method can be applied to capture the periodic attractors regardless of how big the amplitude of harmonic excitation and the quality factor are.  相似文献   
167.
A series of (betaR,5R)- and (betaR,5S)-2,5-disubstituted isoxazolidines: 5-(substituent)-beta-phenyl-2-isoxazolidineethanols, have been prepared by asymmetric nitrone cycloaddition reactions and their NMR spectra recorded over a wide range of temperatures. The spectra at low temperatures indicate the presence of the (betaR,5S) diasteromer almost exclusively as a single invertomer having trans disposition of the substituents at N(2) and C(5), while the (betaR,5R) diasteromer remained as a mixture of two interconverting invertomers in deuterated chloroform. The effect of H-bonding - intramolecular in CDCl(3) and intermolecular in CD(3)OD - on the population ratio of the invertomers and nitrogen inversion process has been investigated. The nitrogen inversion barriers are determined using complete line-shape analysis, and their dependence on solvent is discussed. Due to steric factor the trans-invertomers are found to be more stable than their cis counterparts.  相似文献   
168.
Peptide tagging is a useful tool to improve matrix‐assisted laser desorption/ionization tandem mass spectrometric (MALDI‐MS/MS) analysis. We present a new application of the use of the dansyl chloride (DNS‐Cl). DNS‐Cl is a specific primary amine reagent widely used in protein biochemistry. It adds a fluorescent dimethylaminonaphthalene moiety to the molecule. The evaluation of MALDI‐MS and MS/MS analyses of dansylated peptides shows that dansylation raises the ionization efficiency of the most hydrophilic species compared with the most hydrophobic ones. Consequently, higher Mascot scores and protein sequence coverage are obtained by combining MS and MS/MS data of native and tagged samples. The N‐terminal DNS‐Cl sulfonation improves the peptide fragmentation and promotes the generation of b‐fragments allowing better peptide sequencing. In addition, we set up a labeling protocol based on the microwave chemistry. Peptide dansylation proved to be a rapid and cheap method to improve the performance of liquid chromatography (LC)/MALDI‐MS/MS analysis at the proteomic scale in terms of peptide detection and sequence coverage. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
169.
A novel optical sensor based on a redox reaction for the determination of iodide has been developed. The optode membrane is constructed by immobilization of methyltrioctylammonium chloride on triacetylcellulose polymer. The exchange of chloride as counter ion with iodate in the membrane changes the color to yellow, when it is placed in acidic solution of iodide. The sensor can readily be regenerated by 0.1 mol L−1 NaOH in less than 15 s. The optode has a linear range of 3.94 × 10−6 to 5.51 × 10−5 mol L−1 of iodide ions with a limit of detection 7.44 × 10−7 mol L−1. The relative standard deviation for eight replicate measurements of 3.94 × 10−6 and 1.57 × 10−5 mol L−1 of iodide was 2.83 and 1.38%, respectively. The sensor was successfully applied to the determination of iodide in tablet, powdered milk and urine samples.  相似文献   
170.
Resorcinol–formaldehyde (RF) carbon xerogels were synthesized using different resorcinol/sodium carbonate catalyst molar ratios (R/C = 50, 200, 500 and 1000) and heat treatment temperatures (HTT = 500, 600 and 700) under no external gas flow. The carbon adsorbents were extensively characterized by CHO content, FTIR, TEM and nitrogen adsorption isotherm at 77 K. The effect of R/C, HTT and oxygen content on the development of porosity within carbons was studied. Also, the adsorption capacity of these adsorbents was investigated by the removal of copper (II) ions from aqueous solution using single bottle test. The produced carbon xerogels exhibit a micro-mesopore character, but with different extents depending on the mechanism of porosity generation in relation to R/C, HTT and oxygen functional groups. Results show that the optimum conditions to obtain porous carbon xerogels were the highest R/C = 500–1000 in combination with carbonization preferably at 600 or 700 °C. Single bottle removal of Cu (II) ions indicated the developed carbons with appreciable capacity (qu = 32–130 mg/g) which are controlled by the surface area and surface chemical nature (acidic O-functional groups). Finally, the present investigation provides a new, nanoporous type of porous carbon adsorbents with high adsorption capacity for removal of heavy metals from wastewater media.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号