首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
化学   9篇
力学   3篇
数学   1篇
  2024年   1篇
  2019年   2篇
  2012年   6篇
  2011年   2篇
  2009年   1篇
  2005年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
11.
A mathematical model of unsteady non‐Newtonian blood flow together with the mass transfer through constricted arteries has been developed. The mass transport refers to the movement of atherogenic molecules, i.e. blood‐borne components, such as low‐density lipoproteins from flowing blood into the arterial walls or vice versa. The flowing blood is represented as the suspension of all erythrocytes assumed to be Eringen's micropolar fluid and the arterial wall is considered to be rigid having cosine‐shaped stenosis in its lumen. The mass transfer to blood is controlled by the convection–diffusion equation. The governing equations of motion accompanied by the appropriate choice of the boundary conditions are solved numerically by Marker and Cell method and the results obtained are checked for numerical stability with the desired degree of accuracy. The quantitative analysis carried out finally includes the respective profiles of the flow‐field and the mass concentration along with their distributions over the entire arterial segment as well. The key factors, such as the wall shear stress and Sherwood number, are also examined for further quantitative insight into the flow and the mass transport phenomena through arterial stenosis. The present results show consistency with several existing results in the literature which substantiate sufficiently to validate the applicability of the model under consideration. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
12.
Perylen-3-ylmethyl demonstrated as a new fluorescent photoremovable protecting group (FPRPG) for carboxylic acids and alcohols. Carboxylic acids including amino acids were protected as their corresponding esters by coupling with FPRPG, perylen-3-ylmethyl. Photophysical studies of caged esters showed that they all exhibited strong fluorescence properties and their fluorescence quantum yields were in the range of 0.85–0.95. Irradiation of the caged esters using visible light (≥410 nm) in aqueous acetonitrile released the corresponding carboxylic acids in high chemical (94–97%) and quantum (0.072–0.093) yields. The results obtained from the photolysis of the caged ester in different solvents indicated that solvent has influence on the rate of photorelease. Further, we also explored the ability of FPRPG, perylen-3-ylmethyl for the protection of alcohols and phenols.  相似文献   
13.
Coskun AF  Sencan I  Su TW  Ozcan A 《The Analyst》2011,136(17):3512-3518
We demonstrate lensless fluorescent microscopy over a large field-of-view of ~60 mm(2) with a spatial resolution of <4 μm. In this on-chip fluorescent imaging modality, the samples are placed on a fiber-optic faceplate that is tapered such that the density of the fiber-optic waveguides on the top facet is >5 fold larger than the bottom one. Placed on this tapered faceplate, the fluorescent samples are pumped from the side through a glass hemisphere interface. After excitation of the samples, the pump light is rejected through total internal reflection that occurs at the bottom facet of the sample substrate. The fluorescent emission from the sample is then collected by the smaller end of the tapered faceplate and is delivered to an opto-electronic sensor-array to be digitally sampled. Using a compressive sampling algorithm, we decode these raw lensfree images to validate the resolution (<4 μm) of this on-chip fluorescent imaging platform using microparticles as well as labeled Giardia muris cysts. This wide-field lensfree fluorescent microscopy platform, being compact and high-throughput, might provide a valuable tool especially for cytometry, rare cell analysis (involving large area microfluidic systems) as well as for microarray imaging applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号