首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30114篇
  免费   4056篇
  国内免费   2713篇
化学   20478篇
晶体学   285篇
力学   1945篇
综合类   273篇
数学   3279篇
物理学   10623篇
  2024年   105篇
  2023年   589篇
  2022年   907篇
  2021年   981篇
  2020年   1112篇
  2019年   1081篇
  2018年   911篇
  2017年   814篇
  2016年   1280篇
  2015年   1270篇
  2014年   1536篇
  2013年   2051篇
  2012年   2629篇
  2011年   2659篇
  2010年   1648篇
  2009年   1633篇
  2008年   1736篇
  2007年   1659篇
  2006年   1489篇
  2005年   1228篇
  2004年   940篇
  2003年   789篇
  2002年   751篇
  2001年   562篇
  2000年   558篇
  1999年   651篇
  1998年   578篇
  1997年   574篇
  1996年   659篇
  1995年   506篇
  1994年   464篇
  1993年   388篇
  1992年   371篇
  1991年   322篇
  1990年   255篇
  1989年   202篇
  1988年   157篇
  1987年   136篇
  1986年   127篇
  1985年   118篇
  1984年   88篇
  1983年   61篇
  1982年   41篇
  1981年   36篇
  1980年   18篇
  1978年   19篇
  1977年   23篇
  1976年   20篇
  1975年   28篇
  1974年   27篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
合成了十一种中性离子载体,用它们制成钠离子选择性电极,测定了电极的选择性系数并与文献报道的类似电极进行了比较。  相似文献   
992.
Phase-pure and well-intergrown Cu-LTA membranes are developed through copper ions exchange of sodium ions in Na-LTA framework. For pervaporation of 90.0 wt% ethanol/10.0 wt% water mixtures, the Cu-LTA membrane shows much higher water flux than Na-LTA membranes due to the enhancement of the pore size after ions exchange.  相似文献   
993.
Cobalt imidazolate frameworks are classical electrocatalysts for the oxygen evolution reaction (OER) but suffer from the relatively low activity. Here, a non‐3d metal modulation strategy is presented for enhancing the OER activity of cobalt imidazolate frameworks. Two isomorphous frameworks [Co4(MO4)(eim)6] (M=Mo or W, Heim=2‐ethylimidazole) having Co(eim)3(MO4) units and high water stabilities were designed and synthesized. In different neutral media, the Mo‐modulated framework coated on a glassy carbon electrode shows the best OER performances (1 mA cm?2 at an overpotential of 210 mV in CO2‐saturated 0.5 m KHCO3 electrolyte and 2/10/22 mA cm?2 at overpotential of 388/490/570 mV in phosphate buffer solution) among non‐precious metal catalysts and even outperforms RuO2. Spectroscopic measurements and computational simulations revealed that the non‐3d metals modulate the electronic structure of Co for optimum reactant/product adsorption and tailor the energy of rate‐determining step to a more moderate value.  相似文献   
994.
Photoresponsive molecular systems are essential for molecular optoelectronic devices, but most molecular building blocks are non‐photoresponsive. Employed here is a photoinduced proton transfer (PIPT) strategy to control charge transport through single‐molecule azulene junctions with visible light under ambient conditions, which leads to a reversible and controllable photoresponsive molecular device based on non‐photoresponsive molecules and a photoacid. Also demonstrated is the application of PIPT in two single‐molecule AND gate and OR gate devices with electrical signal as outputs.  相似文献   
995.
Four commonly found pesticides (alachlor, atrazine, metolachlor, and simazine) in surface water were determined using dispersive pipette extraction followed by gas chromatography–mass spectrometry. The rapid mixing and equilibrium between the dispersive pipette extraction adsorbent and water sample resulted in fast and efficient extraction. Using only 5?mL of water sample, the estimated time consumption for extraction of each sample was less than 5?min. Method validation was performed to evaluate accuracy, precision, linearity, the limits of detection, and the limits of quantitation. Average recovery of above 90% was obtained with relative standard deviations below 10%, which indicated good accuracy and precision of the dispersive pipette extraction method. Coefficients of determination were all above 0.9901 and showed good linearity. For the four pesticides studied using the current method, the limits of detection ranged from 7 to 40?ng?L?1, and limits of quantitation were from 20 to 130?ng?L?1. Method validation results supported the application of the current method for drinking water safety monitoring per National Primary Drinking Water Regulations established by the US Environmental Protection Agency. Water samples from Lake Lanier and Stone Mountain Lake (Georgia, USS) were analyzed with this method as a preliminary work for a larger scale drinking water quality study in the future. Trace amounts of simazine and atrazine were found in lake water samples, but both were below the regulation levels of the US Environmental Protection Agency.  相似文献   
996.
A water-soluble polysaccharide TC-DHPA4 with a molecular weight of 8.0 × 105 Da was isolated from tissue-cultured Dendrobium huoshanense by anion exchange and gel permeation chromatography. Monosaccharide analysis revealed that the homogeneous polysaccharide was made up of rhamnose, arabinose, mannose, glucose, galactose and glucuronic acid with a molar ratio of 1.28:1:1.67:4.71:10.43:1.42. The sugar residue sequence analysis based on the GC-MS files and NMR spectra indicated that the backbone of TC-DHPA4 consisted of the repeated units:→6)-β-Galp-(1→6)-β-Galp-(1→4)-β-GlcpA-(1→6)-β-Glcp-(1→6)-β-Glcp-(→. The sugar residue sequences β-Glcp-(1→)-α-Rhap-(1→3)-β-Galp-(1→, β-Glcp-(1→4)-α-Rhap-(1→3)-β-Galp-(1→, β-Galp-(1→6)-β-Manp-(1→3)-β-Galp-(1→, and α-l-Araf-(1→2)-β-Manp-(1→3)-β-Galp-(1→ were identified as the branches attached to the C-3 position of (1→6)-linked galactose in the backbone.  相似文献   
997.
The marine fungus Chondrostereum sp. was collected from a soft coral Sarcophyton tortuosum from the South China Sea. This fungus was cultured in glucose-peptone-yeast (GPY) medium and the culture broth was extracted with EtOAc. By the method of 1H NMR pre-screening and tracing the diagnostic proton signals of the methyl groups, two new hirsutane-type sesquiterpenoids, chondrosterins N and O (1 and 2) were isolated from the metabolite extracts. Their structures were elucidated on the basis of MS, 1D and 2D NMR data.  相似文献   
998.
Surface regulation is an effective strategy to improve the performance of catalysts, but it has been rarely demonstrated for nitrogen reduction reaction (NRR) to date. Now, surface‐rough Rh2Sb nanorod (RNR) and surface‐smooth Rh2Sb NR (SNR) were selectively created, and their performance for NRR was investigated. The high‐index‐facet bounded Rh2Sb RNRs/C exhibit a high NH3 yield rate of 228.85±12.96 μg h?1 mg?1Rh at ?0.45 V versus reversible hydrogen electrode (RHE), outperforming the Rh2Sb SNRs/C (63.07±4.45 μg h?1 mg?1Rh) and Rh nanoparticles/C (22.82±1.49 μg h?1 mg?1Rh), owing to the enhanced adsorption and activation of N2 on high‐index facets. Rh2Sb RNRs/C also show durable stability with negligible activity decay after 10 h of successive electrolysis. The present work demonstrates that surface regulation plays an important role in promoting NRR activity and provides a new strategy for creating efficient NRR electrocatalysts.  相似文献   
999.
Perovskite nanocrystals (NCs) have revolutionized optoelectronic devices because of their versatile optical properties. However, controlling and extending these functionalities often requires a light‐management strategy involving additional processing steps. Herein, we introduce a simple approach to shape perovskite nanocrystals (NC) into photonic architectures that provide light management by directly shaping the active material. Pre‐patterned polydimethylsiloxane (PDMS) templates are used for the template‐induced self‐assembly of 10 nm CsPbBr3 perovskite NC colloids into large area (1 cm2) 2D photonic crystals with tunable lattice spacing, ranging from 400 nm up to several microns. The photonic crystal arrangement facilitates efficient light coupling to the nanocrystal layer, thereby increasing the electric field intensity within the perovskite film. As a result, CsPbBr3 2D photonic crystals show amplified spontaneous emission (ASE) under lower optical excitation fluences in the near‐IR, in contrast to equivalent flat NC films prepared using the same colloidal ink. This improvement is attributed to the enhanced multi‐photon absorption caused by light trapping in the photonic crystal.  相似文献   
1000.
Developing high capacity and stable cathodes is a key to successful commercialization of aqueous Zn‐ion batteries (ZIBs). Pure layered V2O5 has a high theoretical capacity (585 mAh g?1), but it suffers severe capacity decay. Pre‐inserting cations into V2O5 can substantially stabilize the performance, but at an expense of lowered capacity. Here we show that an atomic layer deposition derived V2O5 can be an excellent ZIB cathode with high capacity and exceptional cycle stability at once. We report a rapid in situ on‐site transformation of V2O5 atomic layers into Zn3V2O7(OH)2?2 H2O (ZVO) nanoflake clusters, also a known Zn‐ion and proton intercalatable material. High concentration of reactive sites, strong bonding to the conductive substrate, nanosized thickness and binder‐free composition facilitate ionic transport and promote the best utilization of the active material. We also provide new insights into the V2O5‐dissolution mechanisms for different Zn‐salt aqueous electrolytes and their implications to the cycle stability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号