首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4345篇
  免费   314篇
  国内免费   364篇
化学   3148篇
晶体学   40篇
力学   188篇
综合类   27篇
数学   518篇
物理学   1102篇
  2024年   10篇
  2023年   34篇
  2022年   187篇
  2021年   149篇
  2020年   144篇
  2019年   142篇
  2018年   148篇
  2017年   138篇
  2016年   183篇
  2015年   141篇
  2014年   208篇
  2013年   413篇
  2012年   291篇
  2011年   311篇
  2010年   252篇
  2009年   236篇
  2008年   247篇
  2007年   212篇
  2006年   208篇
  2005年   137篇
  2004年   152篇
  2003年   135篇
  2002年   112篇
  2001年   81篇
  2000年   84篇
  1999年   61篇
  1998年   31篇
  1997年   25篇
  1996年   44篇
  1995年   42篇
  1994年   29篇
  1993年   41篇
  1992年   35篇
  1991年   37篇
  1990年   25篇
  1989年   23篇
  1988年   31篇
  1987年   22篇
  1986年   14篇
  1985年   23篇
  1984年   16篇
  1983年   12篇
  1982年   19篇
  1981年   20篇
  1980年   23篇
  1979年   11篇
  1978年   10篇
  1975年   9篇
  1974年   13篇
  1973年   11篇
排序方式: 共有5023条查询结果,搜索用时 10 毫秒
141.
Journal of Thermal Analysis and Calorimetry - Nanofluids have recently attracted attention of many researchers due to their growing potential applications in heat transfer devices. They possess...  相似文献   
142.
Understanding the biocatalytic or the interfacial electron transfer processes of redox enzymes is decisive to develop high-performance biofuel cells, mimetic catalysts, bioelectrosynthesis reactors, biosensors, and bioelectronic devices. The state-of-art of redox enzyme electrochemistry lies in using in situ and operando instrumentation, in which protein electrochemistry is resourcefully coupled to or hyphenated with numerous analytical techniques. Nevertheless, there is still a lot to research about the manipulation of redox proteins in the unusual sample holding environments, and bioelectrodes engineering emerges as a key. Here, we discuss these challenges in detail, focusing on contemporary instrumentation setups.  相似文献   
143.
Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract with an incompletely understood pathogenesis. Long-standing colitis is associated with increased risk of colon cancer. Despite the availability of various anti-inflammatory and immunomodulatory drugs, many patients fail to respond to pharmacologic therapy and some experience drug-induced adverse events. Dietary supplements, particularly saffron (Crocus sativus), have recently gained an appreciable attention in alleviating some symptoms of digestive diseases. In our study, we investigated whether saffron may have a prophylactic effect in a murine colitis model. Saffron pre-treatment improved the gross and histopathological characteristics of the colonic mucosa in murine experimental colitis. Treatment with saffron showed a significant amelioration of colitis when compared to the vehicle-treated mice group. Saffron treatment significantly decreased secretion of serotonin and pro-inflammatory cytokines, such as TNF-α, IL-1β, and IL-6, in the colon tissues by suppressing the nuclear translocation of NF-κB. The gut microbiome analysis revealed distinct clusters in the saffron-treated and untreated mice in dextran sulfate sodium (DSS)-induced colitis by visualization of the Bray–Curtis diversity by principal coordinates analysis (PCoA). Furthermore, we observed that, at the operational taxonomic unit (OTU) level, Cyanobacteria were depleted, while short-chain fatty acids (SCFAs), such as isobutyric acid, acetic acid, and propionic acid, were increased in saffron-treated mice. Our data suggest that pre-treatment with saffron inhibits DSS-induced pro-inflammatory cytokine secretion, modulates gut microbiota composition, prevents the depletion of SCFAs, and reduces the susceptibility to colitis.  相似文献   
144.
High-grade epithelial ovarian cancer is a fatal disease in women frequently associated with drug resistance and poor outcomes. We previously demonstrated that a marine-derived compound MalforminA1 (MA1) was cytotoxic for the breast cancer cell line MCF-7. In this study, we aimed to examine the effect of MA1 on human ovarian cancer cells. The potential cytotoxicity of MA1was tested on cisplatin-sensitive (A2780S) and cisplatin-resistant (A2780CP) ovarian cancer cell lines using AlamarBlue assay, Hoechst dye, flow cytometry, Western blot, and RT-qPCR. MA1 had higher cytotoxic activity on A2780S (IC50 = 0.23 µM) and A2780CP (IC50 = 0.34 µM) cell lines when compared to cisplatin (IC50 = 31.4 µM and 76.9 µM, respectively). Flow cytometry analysis confirmed the cytotoxic effect of MA1. The synergistic effect of the two drugs was obvious, since only 13% of A2780S and 7% of A2780CP cells remained alive after 24 h of treatment with both MA1 and cisplatin. Moreover, we examined the expression of bcl2, p53, caspase3/9 genes at RNA and protein levels using RT-qPCR and Western blot, respectively, to figure out the cell death mechanism induced by MA1. A significant down-regulation in bcl2 and p53 genes was observed in treated cells compared to non-treated cells (p < 0.05), suggesting that MA1 may not follow the canonical pathway to induce apoptosis in ovarian cancer cell lines. MalforminA1 showed promising anticancer activity by inducing cytotoxicity in cisplatin-sensitive and cisplatin-resistant cancer cell lines. Interestingly, a synergistic effect was observed when MA1 was combined with cisplatin, leading to it overcoming its resistance to cisplatin.  相似文献   
145.
Drought poses a serious threat to oilseed crops by lowering yield and crop failures under prolonged spells. A multi-year field investigation was conducted to enhance the drought tolerance in four genotypes of Camelina and canola by selenium (Se) application. The principal aim of the research was to optimize the crop yield by eliciting the physio-biochemical attributes by alleviating the adverse effects of drought stress. Both crops were cultivated under control (normal irrigation) and drought stress (skipping irrigation at stages i.e., vegetative and reproductive) conditions. Four different treatments of Se viz., seed priming with Se (75 μM), foliar application of Se (7.06 μM), foliar application of Se + Seed priming with Se (7.06 μM and 75 μM, respectively) and control (without Se), were implemented at the vegetative and reproductive stages of both crops. Sodium selenite (Na2SeO3), an inorganic compound was used as Se sources for both seed priming and foliar application. Data regarding physiochemical, antioxidants, and yield components were recorded as response variables at crop maturity. Results indicated that WP, OP, TP, proline, TSS, TFAA, TPr, TS, total chlorophyll contents, osmoprotectant (GB, anthocyanin, TPC, and flavonoids), antioxidants (APX, SOD, POD, and CAT), and yield components (number of branches per plant, thousand seed weight, seed, and biological yields were significantly improved by foliar Se + priming Se in both crops under drought stress. Moreover, this treatment was also helpful in boosting yield attributes under irrigated (non-stress) conditions. Camelina genotypes responded better to Se application as seed priming and foliar spray than canola for both years. It has concluded that Se application (either foliar or priming) can potentially alleviate adverse effects of drought stress in camelina and canola by eliciting various physio-biochemicals attributes under drought stress. Furthermore, Se application was also helpful for crop health under irrigated condition.  相似文献   
146.
The COVID-19 outbreak continues to spread worldwide at a rapid rate. Currently, the absence of any effective antiviral treatment is the major concern for the global population. The reports of the occurrence of various point mutations within the important therapeutic target protein of SARS-CoV-2 has elevated the problem. The SARS-CoV-2 main protease (Mpro) is a major therapeutic target for new antiviral designs. In this study, the efficacy of PF-00835231 was investigated (a Mpro inhibitor under clinical trials) against the Mpro and their reported mutants. Various in silico approaches were used to investigate and compare the efficacy of PF-00835231 and five drugs previously documented to inhibit the Mpro. Our study shows that PF-00835231 is not only effective against the wild type but demonstrates a high affinity against the studied mutants as well.  相似文献   
147.
Journal of Thermal Analysis and Calorimetry - The increasing need of the modern era of technology for better ways to increase the heat transfer performance of thermal systems has made nanoliquids...  相似文献   
148.
A novel synthesis of thiazolo[2,3-b]quinazolines 4(a–e), pyrido[2′,3′:4,5]thiazolo[2,3-b]quinazolines {5(a–e), 6(a–e), and 7(a–e)}, pyrano[2′,3′:4,5]thiazolo[2,3-b]quinazolines 8(a–e), and benzo[4,5]thiazolo[2,3-b]quinazoloine9(a–e) derivatives starting from 2-(Bis-methylsulfanyl-methylene)-5,5-dimethyl-cyclohexane-1,3-dione 2 as efficient α,α dioxoketen dithioacetal is reported and the synthetic approaches of these types of compounds will provide an innovative molecular framework to the designing of new active heterocyclic compounds. In our study, we also present optimization of the synthetic method along with a biological evaluation of these newly synthesized compounds as antioxidants and antibacterial agents against the bacterial strains, like S. aureus, E. coli, and P. aeruginosa. Among all the evaluated compounds, it was found that some showed significant antioxidant activity at 10 μg/mL while the others exhibited better antibacterial activity at 100 μg/mL. The results of this study showed that compound 6(c) possessed remarkable antibacterial activity, whereas compound 9(c) exhibited the highest efficacy as an antioxidant. The structures of the new synthetic compounds were elucidated by elemental analysis, IR, 1H-NMR, and 13C-NMR.  相似文献   
149.
Structural Chemistry - Binding affinity and intermolecular interactions are essential characteristics that could be used to comprehend molecular recognition between molecules in supramolecular...  相似文献   
150.
A novel series of 6-alkyl-4-bromopyrano[3,2-c]quinoline-2,5-diones ( 2a–c ), 6-alkyl-3,4-dibromopyrano[3,2-c]quinoline-2,5-diones ( 4a–c ), and 6-alkyl-3-amino-bromopyrano[3,2-c]quinoline-2,5-diones ( 6a–c ) were synthesized via appropriate conventional methods and in good yields. The structures of target compounds were approved by elemental analysis, IR, 1H NMR, 13C NMR, and mass spectrometry. The antitumor inhibitory activities of the new compounds were evaluated on several cancer cell lines, A-549 (human lung cancer), HCT-116 (human colon cancer), MCF-7 (breast cancer), and HePG-2 (human liver cancer). Moreover, 50% inhibitory concentrations, IC50, were established. 5-Fluorouracil was used as a positive control in the viability assay. The screening results showed that most of the examined compounds exposed powerful inhibition activity toward various cell lines. Particularly, Compound 4c exhibited higher cytotoxic activity against four tumor cell lines than the reference drug, 5-fluorouracil, with significantly lower IC50 values. Accordingly, most of the synthesized compounds would be a better prospective growth in the anticancer drug discovery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号