首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125517篇
  免费   2380篇
  国内免费   394篇
化学   55398篇
晶体学   998篇
力学   8107篇
数学   38767篇
物理学   25021篇
  2023年   393篇
  2022年   310篇
  2021年   506篇
  2020年   712篇
  2019年   655篇
  2018年   11069篇
  2017年   10731篇
  2016年   7407篇
  2015年   2255篇
  2014年   1713篇
  2013年   3242篇
  2012年   7081篇
  2011年   13527篇
  2010年   7500篇
  2009年   7527篇
  2008年   9344篇
  2007年   11401篇
  2006年   2903篇
  2005年   3878篇
  2004年   3726篇
  2003年   3718篇
  2002年   2540篇
  2001年   1211篇
  2000年   1088篇
  1999年   722篇
  1998年   613篇
  1997年   527篇
  1996年   694篇
  1995年   432篇
  1994年   452篇
  1993年   481篇
  1992年   467篇
  1991年   408篇
  1990年   380篇
  1989年   387篇
  1988年   320篇
  1987年   331篇
  1986年   300篇
  1985年   456篇
  1984年   419篇
  1983年   311篇
  1982年   392篇
  1981年   374篇
  1980年   338篇
  1979年   334篇
  1978年   305篇
  1976年   298篇
  1975年   270篇
  1974年   283篇
  1973年   286篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
41.
Krabbe disease is a devastating neurodegenerative disorder characterized by rapid demyelination of nerve fibers. This disease is caused by defects in the lysosomal enzyme β-galactocerebrosidase (GALC), which hydrolyzes the terminal galactose from glycosphingolipids. These lipids are essential components of eukaryotic cell membranes: substrates of GALC include galactocerebroside, the primary lipid component of myelin, and psychosine, a cytotoxic metabolite. Mutations of GALC that cause misfolding of the protein may be responsive to pharmacological chaperone therapy (PCT), whereby small molecules are used to stabilize these mutant proteins, thus correcting trafficking defects and increasing residual catabolic activity in cells. Here we describe a new approach for the synthesis of galacto-configured azasugars and the characterization of their interaction with GALC using biophysical, biochemical and crystallographic methods. We identify that the global stabilization of GALC conferred by azasugar derivatives, measured by fluorescence-based thermal shift assays, is directly related to their binding affinity, measured by enzyme inhibition. X-ray crystal structures of these molecules bound in the GALC active site reveal which residues participate in stabilizing interactions, show how potency is achieved and illustrate the penalties of aza/iminosugar ring distortion. The structure–activity relationships described here identify the key physical properties required of pharmacological chaperones for Krabbe disease and highlight the potential of azasugars as stabilizing agents for future enzyme replacement therapies. This work lays the foundation for new drug-based treatments of Krabbe disease.  相似文献   
42.
The gas‐phase ozonolysis of three methylated alkenes, i.e., trans‐2,2‐dimethyl‐3‐hexene (22dM3H), trans‐2,5‐dimethyl‐3‐hexene (25dM3H), and 4‐methyl‐1‐pentene (4M1P), has been investigated in the presence of sufficient hydroxyl radical scavenger in a laminar flow reactor at ambient temperature (296 ± 2 K) and P = 1 atm of dry air (RH ≤ 5%). Ozone levels in the reactor were monitored by an automatic analyzer. Alkene and gas‐phase product concentrations were determined via online sampling either on three‐bed adsorbent cartridges followed by thermodesorption and GC/FID‐MS analysis or on 2,4‐dinitrophenylhydrazine (DNPH) cartridges for subsequent HPLC/UV analysis. Reaction rate coefficients of (3.38 ± 0.12) × 10?17 for 22dM3H and (2.71 ± 0.26) × 10?17 for 25dM3H, both in cm3 molecule?1 s?1 units, have been obtained under pseudo–first‐order conditions. Primary carbonyl products have been identified for the three investigated alkenes, and branching ratios are reported. In the case of 4M1P ozonolysis, the yield of a Criegee intermediate was indirectly determined. Kinetics and product study results are compared to those of literature when available. This work represents the first investigation of reaction products in the ozonolysis of 22dM3H, 25dM3H, and 4M1P in a flow reactor.  相似文献   
43.
The development of a new three-component chromatography-free reaction of isocyanides, amines and elemental sulfur allowed us the straightforward synthesis of thioureas in water. Considering a large pool of organic and inorganic bases, we first optimized the preparation of aqueous polysulfide solution from elemental sulfur. Using polysulfide solution, we were able to omit the otherwise mandatory chromatography, and to isolate the crystalline products directly from the reaction mixture by a simple filtration, retaining the sulfur in the solution phase. A wide range of thioureas synthesized in this way confirmed the reasonable substrate and functional group tolerance of our protocol.  相似文献   
44.
45.
46.
47.
48.
49.
We give the form of the output function in Ginsburg’s machine in which the input and output dictionaries are abelian groups and the transition function is of a special form.  相似文献   
50.
Naphthalimide‐phthalimide derivatives (NDPDs) have been synthesized and combined with an iodonium salt, N‐vinylcarbazole, amine or 2,4,6‐tris(trichloromethyl)‐1,3,5‐triazine to produce reactive species (i.e., radicals and cations). These generated reactive species are capable of initiating the cationic polymerization of epoxides and/or the radical polymerization of acrylates upon exposure to very soft polychromatic visible lights or blue lights. Compared with the well‐known camphorquinone based systems used as references, the novel NDPD based combinations employed here demonstrate clearly higher efficiencies for the cationic polymerization of epoxides under air as well as the radical polymerization of acrylates. Remarkably, one of the NDPDs (i.e., NDPD2) based systems is characterized by an outstanding reactivity. The structure/reactivity/efficiency relationships of the investigated NDPDs were studied by fluorescence, cyclic voltammetry, laser flash photolysis, electron spin resonance spin trapping, and steady state photolysis techniques. The key parameters for their reactivity are provided. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 665–674  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号