首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78631篇
  免费   349篇
  国内免费   374篇
化学   24554篇
晶体学   800篇
力学   6750篇
数学   32033篇
物理学   15217篇
  2022年   35篇
  2020年   33篇
  2019年   37篇
  2018年   10439篇
  2017年   10273篇
  2016年   6092篇
  2015年   868篇
  2014年   308篇
  2013年   347篇
  2012年   3815篇
  2011年   10535篇
  2010年   5649篇
  2009年   6060篇
  2008年   6610篇
  2007年   8789篇
  2006年   239篇
  2005年   1322篇
  2004年   1556篇
  2003年   1979篇
  2002年   1031篇
  2001年   249篇
  2000年   295篇
  1999年   164篇
  1998年   193篇
  1997年   152篇
  1996年   201篇
  1995年   121篇
  1994年   88篇
  1993年   100篇
  1992年   58篇
  1991年   66篇
  1990年   55篇
  1989年   63篇
  1988年   61篇
  1987年   62篇
  1986年   65篇
  1985年   57篇
  1984年   53篇
  1983年   42篇
  1982年   45篇
  1981年   46篇
  1980年   49篇
  1979年   47篇
  1978年   35篇
  1914年   45篇
  1913年   40篇
  1912年   40篇
  1909年   43篇
  1908年   40篇
  1907年   32篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
991.
Based on an improved HR neuron model, the effects of electrical and chemical autapses on the firing activities of single neurons are studied, and the wave propagation in forward feedback neural network is also discussed by considering autapstic regulation under different intensities of electromagnetic induction. It is found that the electrical activities of single neuron can be changed by exerting excitatory or inhibitory of electrical and chemical autapses. With different feedback gains of electromagnetic induction current, membrane potential shows the oscillatory solutions and steady states. Under the condition of different autapse or electromagnetic induction, the propagation of electrical activities caused by the central neuron is transformed in the forward feedback network. Moreover, the spatial synchronization of the network will be changed by choosing different coupling intensities and feedback gains. It is proved that the electrical and chemical autapses play a significant role in firing modes of single neuron and the wave propagation of the forward feedback networks under the electromagnetic induction.  相似文献   
992.
In visual fields composed of dots spatially randomly distributed but moving rigidly, the percept of coherent motion is lost once Dmax is exceeded, resulting in an incoherent, random percept. We have investigated this transition both from a psychophysics perspective and in the development of a dynamic model of the visual system based on a spatially coupled array of nonlinear damped mass-springs cells. We present results of experiments using rigidly moving arrays of dots of different levels of sparseness and differing displacement magnitudes. Results show that the perception of randomness can be reliably judged and displays a transition from coherent to non-coherent motion as the motion amplitude is increased. Using standard psychophysical just noticeable difference (JND) judgements, we noted that the threshold JND was a function of displacement magnitude and sparseness and could not be explained by extant spatiotemporal filtering models. Our model qualitatively explains the important features of the data, reproducing the experimental Dmax and entropy perception effects with increased stimuli motion amplitude at different spatial sparseness levels. We have then performed some numerical simulations of the model when the masses in the array are randomly distributed. Results show that sparseness plays different role if close or far from Dmax in terms of motion coherence discrimination.  相似文献   
993.
We study the dynamics of networks with coupling delay, from which the connectivity changes over time. The synchronization properties are shown to depend on the interplay of three time scales: the internal time scale of the dynamics, the coupling delay along the network links and time scale at which the topology changes. Concentrating on a linearized model, we develop an analytical theory for the stability of a synchronized solution. In two limit cases, the system can be reduced to an “effective” topology: in the fast switching approximation, when the network fluctuations are much faster than the internal time scale and the coupling delay, the effective network topology is the arithmetic mean over the different topologies. In the slow network limit, when the network fluctuation time scale is equal to the coupling delay, the effective adjacency matrix is the geometric mean over the adjacency matrices of the different topologies. In the intermediate regime, the system shows a sensitive dependence on the ratio of time scales, and on the specific topologies, reproduced as well by numerical simulations. Our results are shown to describe the synchronization properties of fluctuating networks of delay-coupled chaotic maps.  相似文献   
994.
Polarisation of the particle spin can be an important problem for different plasmas. In this article, the contribution of the electron spin on the growth rate of the temperature anisotropy of electromagnetic instabilities has been investigated. Results show that polarisation of the electron spin will restrict the instability growth rate while instability can survive due to the spin-depolarised electrons even when the requested temperature anisotropy is vanished. Instability can reach the damping state exponentially due to the spin-polarised electrons while it can grow linearly due to the spin-depolarised (the semi-classical) electrons.  相似文献   
995.
We have presented non-linear analytical formula for fusion–fission cross-sections. This is achieved by analysing many fusion–fission experiments of the compound nuclei of atomic number range \(23 \le Z \le 146\) available in literature. Our parametrised formula can reproduce the fusion–fission cross-sections which agree well with the experiments. Our parametrisations depend on the charges and masses of the compound nuclei and fission fragments only. These results can be used as a guideline for estimating the fusion–fission cross-sections in those cases where measurements do not exist and also for studying new nuclei which are not yet explored.  相似文献   
996.
997.
998.
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号