首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   167篇
  免费   6篇
  国内免费   1篇
化学   89篇
晶体学   2篇
力学   1篇
数学   45篇
物理学   37篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   4篇
  2016年   5篇
  2015年   7篇
  2014年   4篇
  2013年   14篇
  2012年   11篇
  2011年   12篇
  2010年   4篇
  2009年   10篇
  2008年   8篇
  2007年   10篇
  2006年   6篇
  2005年   10篇
  2004年   7篇
  2003年   7篇
  2002年   5篇
  2001年   3篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1995年   5篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1986年   2篇
  1985年   3篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有174条查询结果,搜索用时 5 毫秒
171.
Technology designed to capture and store carbon dioxide (CO2) will play a significant role in the near-term reduction of CO2 emissions and is considered necessary to slow global warming. Nanoporous carbon (NPC) membranes show promise as a new generation of gas separation membranes suitable for CO2 capture.We have made supported NPC membranes from polyfurfuryl alcohol (PFA) at various pyrolysis temperatures. Positron annihilation lifetime spectrometry (PALS) and wide angle X-ray diffraction (WAXD) results indicate that the pore size decreases whilst the porosity increases with increasing pyrolysis temperature. The membrane performance results support these findings with a significant increase in permeance being seen with increasing pyrolysis temperature, which relates to the increase in porosity.Mixed gas performance measurements also show an increase in CH4 permeance as the operating temperature is increased from 35 to 200 °C, which can be related to an increase in the rate of diffusion. However, the selectivity decreases with increasing operating temperature due to the smaller changes in the CO2 permeance. These smaller changes in CO2 permeance can be related to the stronger adsorption of this gas on the carbon surface at lower operating temperatures. Interestingly, regardless of the original pyrolysis temperature, the selectivity at higher operating temperatures is similar, whereas the permeance remains related to this pyrolysis temperature.  相似文献   
172.
The galectin family of glycan-binding proteins is thought to mediate many cellular processes by oligomerizing cell surface glycoproteins and glycolipids into higher-order aggregates. This hypothesis reflects the known oligomeric states of the galectins themselves and their binding properties with multivalent ligands in vitro, but direct evidence of their ability to cross-link ligands on a cell surface is lacking. A major challenge in fundamental studies of galectin-ligand interactions is that their natural ligands comprise a heterogeneous collection of glycoconjugates that share related glycan structures but disparate underlying scaffolds. Consequently, there is no obvious means to selectively monitor the behaviors of natural galectin ligands on live cell surfaces. Here we describe an approach for probing the galectin-induced multimerization of glycoconjugates on cultured cells. Using RAFT polymerization, we synthesized well-defined glycopolymers (GPs) functionalized with galectin-binding glycans along the backbone, a lipid group on one end and a fluorophore on the other. After insertion into live cell membranes, the GPs' fluorescence lifetime and diffusion time were measured in the presence and absence of galectin-1. We observed direct evidence for galectin-1-mediated extended cross-linking on the engineered cells, a phenomenon that was dependent on glycan structure. This platform offers a new approach to exploring the "galectin lattice" hypothesis and to defining galectin ligand specificity in a physiologically relevant context.  相似文献   
173.
Commercial TiO2 (Hombikat, UV-100) was impregnated with different loadings of zinc nitrate solution and subsequently calcined at different temperatures in order to obtain a stable homogeneous solid composite of ZnO/TiO2. The prepared samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM), UV-vis and Raman spectroscopy, inductively coupled plasma mass spectroscopy (ICP), X-ray photoelectron spectroscopy (XPS) as well as N2 adsorption and desorption measurements. Results show that ZnO was incorporated within the TiO2 crystals and did not form a separate bulky phase or metallic zinc. Moreover, the calcination temperature dramatically modifies the texture properties of the prepared samples compared with original Hombikat TiO2. The photocatalytic performance of the prepared samples was evaluated by monitoring the degradation of methyl orange dye under black light illumination. Three main parameters were studied; ZnO loading, surface area and initial pH of the methyl orange solution. The variation in ZnO loading appears to have less influence on the catalytic activity than either the surface area or the pH.  相似文献   
174.
Cubic, trialkyl tin functionalized spherosilicates Si8O20(SnR3)8 (R = Me, nBu) and the pentagonal prismatic tin-spherosilicate Si10O25(SnMe3)10 have been synthesized and characterized. Single crystal X-ray structures were obtained for Si8O20(SnMe3)8 (I), Si8O20(SnMe3)8 · 4H2O (I · 4H2O), and Si10O25(SnMe3)10 · 4H2O (II). Structural metrics for the silicate cores observed in these structures were compared to other Si8O12 and Si10O25 cores reported in the CSD database. A pronounced tetragonal distortion of the Si8O20 cage leads to Si-O-Si bond angles that are considerably distorted in I · 4H2O when compared to other analogous Si8O12 structures described in the literature. These octameric stannylated spherosilicates readily react with metal chlorides to produce mesocopically interesting metal oxide and hybrid materials. An illustration of this is found in the reaction of the octameric anhydrous tin compound I with titanocene dichloride to give the octatitanocene derivative Si8O20(Cp2TiCl)8 · 3CH2Cl2 (III). The single crystal structure of III is also described.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号