首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2808篇
  免费   40篇
  国内免费   27篇
化学   1568篇
晶体学   25篇
力学   71篇
数学   619篇
物理学   592篇
  2024年   9篇
  2023年   33篇
  2022年   68篇
  2021年   85篇
  2020年   77篇
  2019年   64篇
  2018年   62篇
  2017年   50篇
  2016年   99篇
  2015年   104篇
  2014年   105篇
  2013年   164篇
  2012年   171篇
  2011年   161篇
  2010年   122篇
  2009年   116篇
  2008年   153篇
  2007年   140篇
  2006年   163篇
  2005年   135篇
  2004年   105篇
  2003年   68篇
  2002年   81篇
  2001年   29篇
  2000年   34篇
  1999年   27篇
  1998年   28篇
  1997年   21篇
  1996年   23篇
  1995年   11篇
  1994年   24篇
  1993年   35篇
  1992年   22篇
  1991年   23篇
  1990年   10篇
  1989年   7篇
  1988年   8篇
  1987年   11篇
  1985年   13篇
  1984年   14篇
  1983年   11篇
  1982年   12篇
  1981年   22篇
  1980年   7篇
  1979年   12篇
  1978年   17篇
  1977年   13篇
  1976年   9篇
  1973年   6篇
  1956年   6篇
排序方式: 共有2875条查询结果,搜索用时 15 毫秒
81.
82.
A new series of transition-metal oxyhalides (MCl)LaNb(2)O(7) (M = Cr, Mn, Fe, Co) have been prepared by a simple topochemical route. Layered perovskite hosts (ALaNb(2)O(7), A = Li, Na, K or Rb) were reacted with the corresponding anhydrous metal halides under mild reaction conditions (<400 degrees C). The compounds were examined by X-ray powder diffraction; the series appears to be isostructural with (CuCl)LaNb(2)O(7), and the layer spacings, with the exception of M = Co, follow the trend expected from transition-metal cationic radii. Thermal analysis with differential scanning calorimetry (DSC) shows the materials to be metastable where all four compounds decompose exothermically above 690 degrees C.  相似文献   
83.
Enhancing the flowing properties of fresh concrete is a crucial step for cement based materials users. This is done by adding polymeric admixtures. Such additives have enabled to improve final mechanicals properties and the development of new materials like high performance or self compacting concrete. Like this, the superplasticizers are used in almost cement based materials, in particular for concrete structures that can have a potential interaction with drinking water. It is then essential to have suitable detection techniques to assess whether these organic compounds are dissolved in water after a leaching process or not. The main constituent of the last generation superplasticizer is a PolyCarboxylate-Ester copolymer (PCE), in addition this organic admixture contains polyethylene oxide (free PEO) which constitutes a synthesis residue. Numerous analytical methods are available to characterize superplasticizer content. Although these techniques work well, they do not bring suitable detection threshold to analyze superplasticizer traces in solution with high mineral content such as leachates of hardened cement based materials formulated with superplasticizers. Moreover those techniques do not enable to distinguish free PEO from PCE in the superplasticizer.Here we discuss two highly sensitive analytical methods based on mass spectrometry suitable to perform a rapid detection of superplasticizer compounds traces in CEM I cement paste leachates: MALDI-TOF mass spectrometry, is used to determine the free PEO content in the leachate. However, industrial copolymers (such as PCE) are characterized by high molecular weight and polymolecular index. These two parameters lead to limitation concerning analysis of copolymers by MALDI-TOFMS. In this study, we demonstrate how pyrolysis and a Thermally assisted Hydrolysis/Methylation coupled with a triple-quadrupole mass spectrometer, provides good results for the detection of PCE copolymer traces in CEM I cement paste leachates.  相似文献   
84.
It has been demonstrated that laser induced breakdown spectrometry (LIBS) can be used as an alternative method for the determination of macro (P, K, Ca, Mg) and micronutrients (B, Fe, Cu, Mn, Zn) in pellets of plant materials. However, information is required regarding the sample preparation for plant analysis by LIBS. In this work, methods involving cryogenic grinding and planetary ball milling were evaluated for leaves comminution before pellets preparation. The particle sizes were associated to chemical sample properties such as fiber and cellulose contents, as well as to pellets porosity and density. The pellets were ablated at 30 different sites by applying 25 laser pulses per site (Nd:YAG@1064 nm, 5 ns, 10 Hz, 25 J cm−2). The plasma emission collected by lenses was directed through an optical fiber towards a high resolution echelle spectrometer equipped with an ICCD. Delay time and integration time gate were fixed at 2.0 and 4.5 μs, respectively. Experiments carried out with pellets of sugarcane, orange tree and soy leaves showed a significant effect of the plant species for choosing the most appropriate grinding conditions. By using ball milling with agate materials, 20 min grinding for orange tree and soy, and 60 min for sugarcane leaves led to particle size distributions generally lower than 75 μm. Cryogenic grinding yielded similar particle size distributions after 10 min for orange tree, 20 min for soy and 30 min for sugarcane leaves. There was up to 50% emission signal enhancement on LIBS measurements for most elements by improving particle size distribution and consequently the pellet porosity.  相似文献   
85.
Particle swarm optimization is a novel evolutionary stochastic global optimization method that has gained popularity in the chemical engineering community. This optimization strategy has been successfully used for several applications including thermodynamic calculations. To the best of our knowledge, the performance of PSO in phase stability and equilibrium calculations for both multicomponent reactive and non-reactive mixtures has not yet been reported. This study introduces the application of particle swarm optimization and several of its variants for solving phase stability and equilibrium problems in multicomponent systems with or without chemical equilibrium. The reliability and efficiency of a number of particle swarm optimization algorithms are tested and compared using multicomponent systems with vapor–liquid and liquid–liquid equilibrium. Our results indicate that the classical particle swarm optimization with constant cognitive and social parameters is a reliable method and offers the best performance for global minimization of the tangent plane distance function and the Gibbs energy function in both reactive and non-reactive systems.  相似文献   
86.
87.
Vícha J  Demo G  Marek R 《Inorganic chemistry》2012,51(3):1371-1379
Two novel Pt(IV) complexes of aromatic cytokinins with possible antitumor properties were prepared by reaction of selected aminopurines with K(2)PtCl(6). The structures of both complexes, 9-[6-(benzylamino)purine] pentachloroplatinate (IV) and 9-[6-(furfurylamino)purine] pentachloroplatinate (IV), were characterized in detail by using two-dimensional NMR spectroscopy ((1)H, (13)C, (15)N, and (195)Pt) in solution and CP/MAS NMR techniques in the solid state. We report for the first time the X-ray structure of a nucleobase adenine derivative coordinated to Pt(IV) via the N9 atom. The protonation equilibria for the complexes in solution were characterized by using NMR spectroscopy (isotropic chemical shifts and indirect nuclear spin-spin coupling constants) and the structural conclusions drawn from the NMR analysis are supported by relativistic density-functional theory (DFT) calculations. Because of the presence of the Pt atom, hybrid GGA functionals and scalar-relativistic and spin-orbit corrections were employed for both the DFT calculations of the molecular structure and particularly for the NMR chemical shifts. In particular, the populations of the N7-protonated and neutral forms of the complexes in solution were characterized by correlating the experimental and the DFT-calculated NMR chemical shifts. In contrast to the chemical exchange process involving the N7-H group, the hydrogen atom at N3 was determined to be unexpectedly rigid, probably because of the presence of the stabilizing intramolecular interaction N3-H···Cl. The described methodology combining the NMR spectroscopy and relativistic DFT calculations can be employed for characterizing the tautomeric and protonation equilibria in a large family of transition-metal-modified purine bases.  相似文献   
88.
The signatures of nanosolvation on the one‐ and two‐dimensional (1D and 2D) IR spectra of a proton‐transfer mode in a hydrogen‐bonded complex dissolved in polar solvent molecule nanoclusters of varying size are elucidated by using mixed quantum–classical molecular dynamics simulations. For this particular system, increasing the number of solvent molecules successively from N=7 to N=9 initiates the transition of the system from a cluster state to a bulk‐like state. Both the 1D and 2D IR spectra reflect this transition through pronounced changes in their peak intensities and numbers, but the time‐resolved 2D IR spectra also manifest spectral features that uniquely identify the onset of the cluster‐to‐bulk transition. In particular, it is observed that in the 1D IR spectra, the relative intensities of the peaks change such that the number of peaks decreases from three to two as the size of the cluster increases from N=7 to N=9. In the 2D IR spectra, off‐diagonal peaks are observed in the N=7 and N=8 cases at zero waiting time, but not in the N=9 case. It is known that there are no off‐diagonal peaks in the 2D IR spectrum of the bulk version of this system at zero waiting time, so the disappearance of these peaks is a unique signature of the onset of bulk‐like behavior. Through an examination of the trajectories of various properties of the complex and solvent, it is possible to relate the emergence of these off‐diagonal peaks to an interplay between the vibrations of the complex and the solvent polarization dynamics.  相似文献   
89.
Chalcones may be cyclised to the corresponding flavanones by stirring with KF-celite suspended in methanol at reflux. This method gives consistently higher conversion than other reported procedures and its utility is illustrated by the synthesis of the linear prenylated flavanone bavachinin.  相似文献   
90.
Surface-grafted, environmentally responsive polymers have shown great promise for controlling adsorption and desorption of macromolecules and cells on solid surfaces. In the paper, we demonstrate that certain mixed self-assembled monolayers (SAMs) of oligo(ethylene glycol) (OEG) and methyl-terminated alkanethiolates on gold form surfaces with switchable hydrophobicity and tendency for protein adsorption and cellular attachment. At temperatures above 32 degrees C, SAMs with a surface density of approximately 50% OEG adsorbed significant amounts of pyruvate kinase and lysozyme, whereas below this temperature, these same SAMs were resistant to the adsorption of these proteins. Furthermore, protein layers adsorbed to these SAMs above 32 degrees C were removed upon rinsing with water below this temperature. Similar results were seen for attachment and release of the marine bacterium, Cobetia marina. The change from nonresistance to adsorptive state of the SAMs was concomitant with a change in advancing water contact angle. Vibrational sum frequency generation spectroscopy suggests that the temperature-induced changes coincide with a disorder-to-partial order transition of the hydrated methylene chains of the OEG moieties within the SAMs. Mixed OEG-methyl SAMs represent both a convenient means of controlling macromolecular and cellular adsorption within the laboratory and a useful tool for relating adsorption properties to molecular structures within the SAMs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号