首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4564篇
  免费   121篇
  国内免费   16篇
化学   2883篇
晶体学   13篇
力学   236篇
数学   797篇
物理学   772篇
  2023年   50篇
  2022年   138篇
  2021年   132篇
  2020年   109篇
  2019年   97篇
  2018年   82篇
  2017年   91篇
  2016年   185篇
  2015年   143篇
  2014年   139篇
  2013年   245篇
  2012年   258篇
  2011年   287篇
  2010年   171篇
  2009年   149篇
  2008年   279篇
  2007年   268篇
  2006年   221篇
  2005年   236篇
  2004年   162篇
  2003年   156篇
  2002年   112篇
  2001年   51篇
  2000年   47篇
  1999年   45篇
  1998年   32篇
  1997年   31篇
  1996年   52篇
  1995年   44篇
  1994年   37篇
  1993年   34篇
  1992年   26篇
  1991年   27篇
  1990年   28篇
  1989年   29篇
  1988年   29篇
  1987年   39篇
  1986年   23篇
  1985年   39篇
  1984年   38篇
  1983年   19篇
  1982年   21篇
  1981年   26篇
  1980年   27篇
  1979年   19篇
  1978年   16篇
  1977年   28篇
  1975年   14篇
  1974年   13篇
  1858年   11篇
排序方式: 共有4701条查询结果,搜索用时 15 毫秒
81.
A mixture of sponges of the East Pyrenean Mediterranean is shown to contain the known sponge products longifolin ( 1 ), avarol ((+)- 3 ), and avarone ( 4 ) and the terrestrial-plant product sesquirosefuran ( 2 ), besides to the new furano-sesquiterpenoids tavacfuran (= 3-methyl-2-[(3′Z)-3′-methyl-4″-methyl-2″-furyl-3′-butenyl]furan; ( 5 ) and tavacpallescensin (= 5,10-dihydro-6,9-dimethyl-4H-benzo[5,6]cyclohepta[1,2-b]furan; 6 ) and the new furano-butenolide sesquiterpenoids tavacbutenolide-1 (= (±-4-ethoxy-2-methyl-4-)[(2′E)-2′-methyl-4′-(3″-methyl-2″-furyl)-2′-butenyl]-2-buten-4-olide; (±)- 7 ) and tavacbutenolide-2 (= (±)-4-ethoxy-3-methyl-4-[2′E)-3′-methyl-4′-(4″-methyl-2″-furyl)-2′-butenyl]-2-buten-4-olide; (±)- 8 ). Structural assignments are based on NMR data and on the synthesis of the (E)-isomer of 5 . The sponge Dysidea tupha of the same area is also shown to contain the two sesquiterpenoids ent-furodysinin ((?)- 14 ), which is enantiomeric to a product of a Dysidea sp. of Australian waters, and tuphabutenolide ((+)- 15 ).  相似文献   
82.
A procedure for elemental composition determination of water-borne river particles (Po River) on both size-fractionated and unfractionated submicron particles (0.1–1 μm) by graphite furnace atomic absorption spectroscopy (GFAAS) and inductively coupled plasma-mass spectrometry (ICP-MS) is reported. Sample fractionation was performed using sedimentation field-flow fractionation (SdFFF). The distribution of relative mass vs. particle size was determined using UV detection. Fractions were collected over a narrow size range for scanning electron microscopy. With this combination of techniques the mass, elemental composition, and shape distributions can be obtained across the size spectrum of the sample.

The size distributions of the major elements (Al, Fe) were determined by coupling both GFAAS and ICP-MS techniques to the SdFFF. The procedure was validated using a reference clay sample. Satisfactory agreement was found between both the GFAAS and ICP-MS aluminium signal and the UV detector signal. Some discrepancies were observed in the Fe/Al ratios when comparing GFAAS and ICP-MS. Thus further investigation is in order to fully assess the role of SdFFF-ICP-MS and SdFFF-GFAAS techniques for elemental characterisation of aquatic colloids. Both GFAAS and ICP-MS signals unambiguously indicate a significantly higher Fe content in the lower size range, which is consistent with previous investigations.

Trace element levels in unfractionated Po River particles, determined by both GFAAS and ICP-MS, show good agreement. The high levels of Cu, Pb, Cr and Cd found associated with the colloidal particles underlines the significance of the environmental role played by the suspended matter in rivers in both highly industrialised and intensively cultivated areas.  相似文献   

83.
The degradation pathways of highly active [Cp*Ir(κ2-N,N-R-pica)Cl] catalysts (pica=picolinamidate; 1 R=H, 2 R=Me) for formic acid (FA) dehydrogenation were investigated by NMR spectroscopy and DFT calculations. Under acidic conditions (1 equiv. of HNO3), 2 undergoes partial protonation of the amide moiety, inducing rapid κ2-N,N to κ2-N,O ligand isomerization. Consistently, DFT modeling on the simpler complex 1 showed that the κ2-N,N key intermediate of FA dehydrogenation ( INH ), bearing a N-protonated pica, can easily transform into the κ2-N,O analogue ( INH2 ; ΔG≈11 kcal mol−1, ΔG ≈−5 kcal mol−1). Intramolecular hydrogen liberation from INH2 is predicted to be rather prohibitive (ΔG≈26 kcal mol−1, ΔG≈23 kcal mol−1), indicating that FA dehydrogenation should involve mostly κ2-N,N intermediates, at least at relatively high pH. Under FA dehydrogenation conditions, 2 was progressively consumed, and the vast majority of the Ir centers (58 %) were eventually found in the form of Cp*-complexes with a pyridine-amine ligand. This likely derived from hydrogenation of the pyridine-carboxiamide via a hemiaminal intermediate, which could also be detected. Clear evidence for ligand hydrogenation being the main degradation pathway also for 1 was obtained, as further confirmed by spectroscopic and catalytic tests on the independently synthesized degradation product 1 c . DFT calculations confirmed that this side reaction is kinetically and thermodynamically accessible.  相似文献   
84.
85.
We present in this work a first X-ray Absorption Spectroscopy study of the interactions of Zn with human BST2/tetherin and SARS-CoV-2 orf7a proteins as well as with some of their complexes. The analysis of the XANES region of the measured spectra shows that Zn binds to BST2, as well as to orf7a, thus resulting in the formation of BST2-orf7a complexes. This structural information confirms the the conjecture, recently put forward by some of the present Authors, according to which the accessory orf7a (and possibly also orf8) viral protein are capable of interfering with the BST2 antiviral activity. Our explanation for this behavior is that, when BST2 gets in contact with Zn bound to the orf7a Cys15 ligand, it has the ability of displacing the metal owing to the creation of a new disulfide bridge across the two proteins. The formation of this BST2-orf7a complex destabilizes BST2 dimerization, thus impairing the antiviral activity of the latter.  相似文献   
86.

Acetaminophen is a well-known drug commonly used to provide pain relief, but it can also lead to acute liver failure at high concentrations. Therefore, there is considerable interest in monitoring its concentrations. Sensitive and selective acetaminophen electrochemical sensors were designed by cycling a glassy carbon electrode (GCE) to high potentials in the presence of β-CD in a phosphate electrolyte, or by simply activating the GCE electrode in the phosphate solution. Using cyclic voltammetry, adsorption-like voltammograms were recorded. The acetaminophen oxidation product, N-acetyl benzoquinone imine, was protected from hydrolysis, and this was attributed to the adsorption of acetaminophen at the modified GCE. The rate constants for the oxidation of acetaminophen were estimated as 4.3 × 10–3 cm2 s–1 and 3.4 × 10–3 cm2 s–1 for the β-CD-modified and -activated electrodes, respectively. Using differential pulse voltammetry, the limit of detection was calculated as 9.7 × 10–8 M with a linear concentration range extending from 0.1 to 80 μM. Furthermore, good selectivity was achieved in the presence of caffeine, ascorbic acid and aspirin, enabling the determination of acetaminophen in a commercial tablet. Similar electrochemical data were obtained for both the β-CD-modified and activated GCE surfaces, suggesting that the enhanced detection of acetaminophen is connected mainly to the activation and oxidation of the GCE. Using SEM, EDX and FTIR, no evidence was obtained to indicate that the β-CD was electropolymerised at the GCE.

  相似文献   
87.
A fully quantitative theory of the relationship between protein conformation and optical spectroscopy would facilitate deeper insights into biophysical and simulation studies of protein dynamics and folding. In contrast to intense bands in the far-ultraviolet, near-UV bands are much weaker and have been challenging to compute theoretically. We report some advances in the accuracy of calculations in the near-UV, which were realised through the consideration of the vibrational structure of the electronic transitions of aromatic side chains.  相似文献   
88.
The 3CL-Protease appears to be a very promising medicinal target to develop anti-SARS-CoV-2 agents. The availability of resolved structures allows structure-based computational approaches to be carried out even though the lack of known inhibitors prevents a proper validation of the performed simulations. The innovative idea of the study is to exploit known inhibitors of SARS-CoV 3CL-Pro as a training set to perform and validate multiple virtual screening campaigns. Docking simulations using four different programs (Fred, Glide, LiGen, and PLANTS) were performed investigating the role of both multiple binding modes (by binding space) and multiple isomers/states (by developing the corresponding isomeric space). The computed docking scores were used to develop consensus models, which allow an in-depth comparison of the resulting performances. On average, the reached performances revealed the different sensitivity to isomeric differences and multiple binding modes between the four docking engines. In detail, Glide and LiGen are the tools that best benefit from isomeric and binding space, respectively, while Fred is the most insensitive program. The obtained results emphasize the fruitful role of combining various docking tools to optimize the predictive performances. Taken together, the performed simulations allowed the rational development of highly performing virtual screening workflows, which could be further optimized by considering different 3CL-Pro structures and, more importantly, by including true SARS-CoV-2 3CL-Pro inhibitors (as learning set) when available.  相似文献   
89.
The consumers’ interest towards beer consumption has been on the rise during the past decade: new approaches and ingredients get tested, expanding the traditional recipe for brewing beer. As a consequence, the field of “beeromics” has also been constantly growing, as well as the demand for quick and exhaustive analytical methods. In this study, we propose a combination of nuclear magnetic resonance (NMR) spectroscopy and chemometrics to characterize beer. 1H-NMR spectra were collected and then analyzed using chemometric tools. An interval-based approach was applied to extract chemical features from the spectra to build a dataset of resolved relative concentrations. One aim of this work was to compare the results obtained using the full spectrum and the resolved approach: with a reasonable amount of time needed to obtain the resolved dataset, we show that the resolved information is comparable with the full spectrum information, but interpretability is greatly improved.  相似文献   
90.
Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal forms of human cancer, characterized by unrestrained progression, invasiveness and treatment resistance. To date, there are limited curative options, with surgical resection as the only effective strategy, hence the urgent need to discover novel therapies. A platform of onco-immunology targets is represented by molecules that play a role in the reprogrammed cellular metabolism as one hallmark of cancer. Due to the hypoxic tumor microenvironment (TME), PDA cells display an altered glucose metabolism—resulting in its increased uptake—and a higher glycolytic rate, which leads to lactate accumulation and them acting as fuel for cancer cells. The consequent acidification of the TME results in immunosuppression, which impairs the antitumor immunity. This review analyzes the genetic background and the emerging glycolytic enzymes that are involved in tumor progression, development and metastasis, and how this represents feasible therapeutic targets to counteract PDA. In particular, as the overexpressed or mutated glycolytic enzymes stimulate both humoral and cellular immune responses, we will discuss their possible exploitation as immunological targets in anti-PDA therapeutic strategies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号