首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79877篇
  免费   494篇
  国内免费   388篇
化学   25590篇
晶体学   793篇
力学   6774篇
数学   32301篇
物理学   15301篇
  2023年   48篇
  2022年   44篇
  2021年   61篇
  2020年   123篇
  2019年   138篇
  2018年   10472篇
  2017年   10284篇
  2016年   6179篇
  2015年   958篇
  2014年   396篇
  2013年   446篇
  2012年   3967篇
  2011年   10683篇
  2010年   5726篇
  2009年   6102篇
  2008年   6707篇
  2007年   8835篇
  2006年   292篇
  2005年   1398篇
  2004年   1581篇
  2003年   2010篇
  2002年   1025篇
  2001年   261篇
  2000年   304篇
  1999年   170篇
  1998年   204篇
  1997年   153篇
  1996年   208篇
  1995年   126篇
  1994年   84篇
  1993年   97篇
  1992年   54篇
  1991年   66篇
  1990年   49篇
  1989年   64篇
  1988年   62篇
  1987年   59篇
  1986年   60篇
  1985年   46篇
  1984年   45篇
  1983年   36篇
  1982年   44篇
  1981年   40篇
  1980年   48篇
  1979年   46篇
  1914年   45篇
  1913年   40篇
  1912年   40篇
  1909年   41篇
  1908年   40篇
排序方式: 共有10000条查询结果,搜索用时 10 毫秒
941.
The main aim of this work was the preparation of samples with thorium content on the steel discs by electrodeposition for determination of natural thorium isotope by alpha spectrometry and secondary ion mass spectrometry and finding out their possible linear correlation between these methods. The analysis of the composition of surface was other aim of study. Discs were measured by alpha spectrometer. After that, alpha spectrometry discs were analyzed by TOF-SIMS IV, which is installed in the International Laser Centre in Bratislava. The integral and normalized intensities of isotope of 232Th and intensities of ions of ThO+, ThOH+, ThO2H+, Th2O4H+, ThO2 ?, ThO3H?, ThH3O3 ? a ThN2O5H? were measured. The linear correlation is between surface’s weights of Th and intensities of ions of Th+ from identified in SIMS spectra. We found out the chemical binding between thorium and oxygen and hydrogen on the surface of samples by SIMS method. Obtained intensities of ions 232ThO+, 232ThOH+, 232ThO2H+ prove the presence of oxidized forms of thorium in the upper layers of surface. The oxidized ions predominate in univalent form of thorium up to deep about 3,000 nm.  相似文献   
942.
The morphology and crystalline structure changes of cellulose during dissolution in 1-butyl-3-methylimidazolium chloride [(BMIM)Cl] were investigated by optical microscopy and synchrotron radiation wide-angle X-ray diffraction (WAXD). Neither swelling nor dissolution of cellulose was observed under the melting point of [BMIM]Cl. While the temperature was elevated to 70 °C, the swelling phenomenon of cellulose happened with the interplanar spacing of ( _boxclose_boxclose_boxclose0 1\bar{1}0 ) and (020) planes increased slightly. With the temperature further going up to 80 °C, cellulose was dissolved gradually with the crystallinity (W c,x) and crystalline index (CrI) of cellulose decreased rapidly, which indicated the crystalline structure of cellulose was destroyed completely and transformed into amorphous structure.  相似文献   
943.
A novel hydrogel has synthesized by grafting polyacrylamide chains onto hydroxypropyl methylcellulose in presence of potassium persulphate as initiator using solution polymerization technique. The reaction was carried out in homogeneous aqueous medium. The effect of reaction parameters on percentage of grafting (% G) and grafting efficiency (% GE) were discussed. The parameters were varied systematically to achieve the best hydrogel. Developed hydrogels were characterized by various materials characterization techniques. The dynamic and equilibrium swelling properties of hydrogels were investigated as a function of pH and time in various buffer solutions similar to that of gastric and intestinal fluid. Results showed that with increase in % G and % GE, the rate of swelling decreases, which can opens the door for further study of their utilization as matrices for controlled/sustained/targeted drug delivery.  相似文献   
944.
In this work, organic-inorganic composite materials of polyaniline and manganese oxide were synthesized and investigated their electrochemical performance. This composite material was prepared by oxidizing aniline with methyl triphenylphosphonium permanganate as a novel organic oxidant via aqueous, emulsion, and interfacial polymerization pathways. This process led to the formation of polyaniline-sulfate salt (PANI-SA-Mn5O8). Formation of polyaniline-sulfate salt was confirmed from FT-IR, EDAX, and XRD results. Formation of Mn5O8 was supported by XRD spectrum. PANI-SA-Mn5O8 prepared via emulsion polymerization pathway was obtained in porous nanorod morphology with high conductivity (9.4 S cm?1) compared to that of the other sample prepared via interfacial pathway (1.7 S cm?1). Whereas, aqueous polymerization pathway resulted in sheet-like morphology with a conductivity of 0.8 S cm?1. These composites were used as pseudocapacitive electrode materials. Electrochemical characterization (cyclic voltammetry, charge-discharge, and electrochemical impedance measurement) showed that composite prepared via emulsion polymerization pathway gave better electrochemical performance, and showed good cycling behavior.  相似文献   
945.
Normetanephrine is a marker for pheochromocytoma, a rare catecholamine-secreting and neuroendocrine tumor, that arises from sympathetic and parasympathetic paraganglia. In this work, a novel carbon/chitosan electrode paste was used for sensitive voltammetric determination of normetanephrine and dopamine in the presence of ascorbic acid and uric acid. The modified electrode has shown an increase in the effective area of up to 68%, well-separated oxidation peaks, and an excellent electrocatalytic activity. The electrochemical response characteristics were investigated by cyclic and differential pulse voltammetry. Interestingly, high sensitivity and selectivity in the linear range of normetanephrine, dopamine, ascorbic acid, and uric acid concentrations were observed. The present method was applied in the urine sample and satisfactory results were obtained showing that this electrode is very suitable in pharmaceutical and clinical preparations.  相似文献   
946.
In this paper, an original solution for the modeling and simulation of the adsorption process of a phenothiazine derivative on graphite electrodes is presented. The adsorption process is considered a distributed parameter one, due to the fact that the adsorbed phenothiazine quantity is a function depending on two independent variables. The structure parameters of the adsorption process, which define the influence of both independent variables, are determined using an experimental identification method. The experimental data are obtained through an experiment which is based on the process step response. In order to simulate the adsorption process, the approximate analytical solution, representing the process model, is determined. The simulation results prove the model generality; it is being simulated in relation to both independent variables.  相似文献   
947.
In this work, hybrid conductive fillers of carbon black (CB) and carbon nanotubes (CNTs) were introduced into polylactide (PLA)/thermoplastic poly(ether)urethane (TPU) blend (70/30 by weight) to tune the phase morphology and realize rapid electrically actuated shape memory effect (SME). Particularly, the dispersion of conductive fillers, the phase morphology, the electrical conductivities and the shape memory properties of the composites containing CB or CB/CNTs were comparatively investigated. The results suggested that both CB and CNTs were selectively localized in TPU phase, and induced the morphological change from the sea-island structure to the co-continuous structure. The presence of CNTs resulted in a denser CB/CNTs network, which enhanced the continuity of TPU phase. Because the formed continuous TPU phase provided stronger recovery driving force, the PLA/TPU/CB/CNTs composites showed better shape recovery properties compared with the PLA/TPU/CB composites at the same CB content. Moreover, the CB and CNTs exerted a synergistic effect on enhancing the electrical conductivities of the composites. As a result, the prepared composites exhibited excellent electrically actuated SME and the shape recovery speed was also greatly enhanced. This work demonstrated a promising strategy to achieve rapid electrically actuated SME via the addition of hybrid nanoparticles with self-networking ability in binary PLA/TPU blends over a much larger composition range.  相似文献   
948.
The interfacing study of biopolymer and supramolecular chemistry enables a better understanding of fundamental biochemical processes and the creating of new high-performance biomaterials. In this review, we introduced an “in vivo self-assembly” strategy which means in situ construction of functional self-assembled superstructures in specific physiological or pathological conditions in cell, tissue or animal levels that exhibit diverse biomedical effects. By using this strategy, unexpected phenomena and insights, e.g, assembly/aggregation induced retention (AIR) effect have been demonstrated where the self-assembled nanostructures showed extraordinary enhanced accumulation and retention of therapeutics in targeted sites.  相似文献   
949.
The system constants of the solvation parameter model are used to prepare system maps for the retention of small neutral compounds on phenylhexylsiloxane- and pentafluorophenylpropylsiloxane-bonded superficially porous silica stationary phases (Kinetex Phenyl-Hexyl and Kinetex F5) for aqueous mobile phases containing 10–70% (v/v) methanol or acetonitrile. Electrostatic interactions (cation exchange) are important for the retention of weak bases for acetonitrile–water mobile phases, but virtually absent for the same compounds for methanol–water mobile phases. The selectivity of the Kinetex Phenyl-Hexyl stationary phase for small neutral compounds is similar to an octadecylsiloxane-bonded silica stationary phase with similar morphology Kinetex C-18 for both methanol–water and acetonitrile–water mobile phase compositions. The Kinetex Phenyl-Hexyl and XBridge Phenyl stationary phases with the same topology but different morphology are selectivity equivalent, confirming that solvation of the interphase region can be effective at dampening selectivity differences for modern stationary phases. Small selectivity differences observed for XTerra Phenyl (different morphology and topology) confirm previous reports that the length and type of space arm for phenylalkylsiloxane-bonded silica stationary phases can result in small changes in selectivity. The pentafluorophenylpropylsiloxane-bonded silica stationary phase (Kinetex F5) has similar separation properties to the phenylhexylsiloxane-bonded silica stationary phases, but is not selectivity equivalent. However, for method development purposes, the scope to vary separations from an octadecylsiloxane-bonded silica stationary phase (Kinetex C-18) to “phenyl phase” of the types studied here is limited for small neutral compounds. In addition, selectivity differences for the above stationary phases are enhanced by methanol–water and largely suppressed by acetonitrile–water mobile phases. For bases, larger selectivity differences are possible for the above stationary phases if electrostatic interactions are exploited, especially for acetonitrile-containing mobile phases.  相似文献   
950.
The system constants of the solvation parameter model are used to prepare system maps for the retention of small neutral compounds on an octylsiloxane-bonded (Kinetex C8) and diisobutyloctadecylsiloxane-bonded (Kinetex XB-C18) superficially porous silica stationary phases for aqueous mobile phases containing 10–70% (v/v) methanol or acetonitrile. Electrostatic interactions (cation-exchange) are important for the retention of weak bases with acetonitrile–water but not for methanol–water mobile phases. Compared with an octadecylsiloxane-bonded silica stationary phase (Kinetex C18) retention is reduced due to a less favorable phase ratio for both the octylsiloxane-bonded and diisobutyloctadecylsiloxane-bonded silica stationary phases while selectivity differences are small and solvent dependent. Selectivity differences for neutral compounds are larger for methanol–water but significantly suppressed for acetonitrile–water mobile phases. The selectivity differences arise from small changes in all system constants with solute size and hydrogen-bond basicity being the most important due to their dominant contribution to the retention mechanism. Exchanging the octadecylsiloxane-bonded silica column for either the octylsiloxane-bonded or diisobutyloctadecylsiloxane-bonded silica column affords little scope for extending the selectivity space and is restricted to fine tuning of separations, and in some cases, to obtain faster separations due to a more favorable phase ratio. For weak bases larger differences in relative retention are expected with acetonitrile–water mobile phases on account of the additional cation exchange interactions possible that are absent for the octadecylsiloxane-bonded silica stationary phase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号