首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   617篇
  免费   14篇
化学   350篇
晶体学   8篇
力学   19篇
数学   34篇
物理学   220篇
  2022年   5篇
  2021年   7篇
  2020年   10篇
  2019年   6篇
  2018年   3篇
  2017年   4篇
  2016年   16篇
  2015年   8篇
  2014年   10篇
  2013年   29篇
  2012年   22篇
  2011年   37篇
  2010年   20篇
  2009年   34篇
  2008年   40篇
  2007年   34篇
  2006年   29篇
  2005年   34篇
  2004年   31篇
  2003年   23篇
  2002年   18篇
  2001年   17篇
  2000年   8篇
  1999年   14篇
  1998年   13篇
  1997年   6篇
  1996年   8篇
  1995年   9篇
  1994年   10篇
  1993年   8篇
  1992年   8篇
  1991年   8篇
  1990年   5篇
  1989年   4篇
  1988年   10篇
  1987年   5篇
  1984年   6篇
  1983年   5篇
  1982年   9篇
  1981年   4篇
  1980年   4篇
  1979年   10篇
  1978年   4篇
  1976年   2篇
  1975年   5篇
  1974年   2篇
  1973年   4篇
  1972年   3篇
  1970年   2篇
  1968年   2篇
排序方式: 共有631条查询结果,搜索用时 15 毫秒
601.
Alkaline earth stannates have recently become important materials in ceramic technology due to its application as humidity sensor. In this work, alkaline earth stannates doped with Fe3+ were synthesized by the polymeric precursor method, with calcination at 300 °C/7 h and between 400 and 1100 °C/4 h. The powder precursors were characterized by TG/DTA after partial elimination of carbon. Characterization after the second calcination step was done by X-ray diffraction, infrared spectroscopy, and UV?Cvis spectroscopy. Results confirmed the formation of the SrSnO3:Fe with orthorhombic perovskite structure, besides SrCO3 as secondary phase. Crystallization occurred at 600 °C, being much lower than the crystallization temperature of perovskites synthesized by solid state reaction. The analysis of TG curves indicated that the phase crystallization was preceded by two thermal decomposition steps. Carbonate elimination occurred at two different temperatures, around 800 °C and above 1000 °C.  相似文献   
602.
A number of image denoising models based on higher order parabolic partial differential equations (PDEs) have been proposed in an effort to overcome some of the problems attendant to second order methods such as the famous Perona–Malik model. However, there is little analysis of these equations to be found in the literature. In this paper, methods of maximal regularity are used to prove the existence of unique local solutions to a class of fourth order PDEs for noise removal. The proof is laid out explicitly for two newly proposed fourth order models, and an outline is given for how to apply the techniques to other proposed models.  相似文献   
603.
Chen RC  Xie HL  Rigon L  Longo R  Castelli E  Xiao TQ 《Optics letters》2011,36(9):1719-1721
Phase retrieval extracts quantitative phase information from x-ray propagation-based phase-contrast images. Notwithstanding inherent approximations, phase retrieval using a single sample-to-detector distance (SDD) is very attractive, because it imposes no setup complications or additional radiation dose compared to absorption-based imaging. Considering the phase-attenuation duality (ε=δ/β, where ε is constant), a simple absorption correction factor is proposed for the modified Bronnikov algorithm in x-ray propagation-based phase-contrast computed tomography (PPCT). Moreover, a practical method for calculating the optimal ε value is proposed, which requires no prior knowledge of the sample. Tests performed on simulation and experimental data successfully distinguished different materials in a quasihomogeneous and weakly absorbing sample from a single SDD-PPCT data point.  相似文献   
604.
605.
We investigated the possibility of noncollinear magnetism in small Mn(n) clusters (n=2-6) using the density-functional method SIESTA with the generalized gradient approximation (GGA) to exchange and correlation. The lowest-energy states identified were collinear, with the atomic spin magnetic moments pointing in the same direction, for Mn(2) and Mn(3), and noncollinear for Mn(4), Mn(5) and, most decidedly, Mn(6). These SIESTA/GGA results, which are compared with those of an earlier SIESTA study that used the local spin density approximation, are qualitatively in keeping with the result obtained by VASP/GGA calculations.  相似文献   
606.
The stability and presence of micron-scale bubbles (microbubbles) is of considerable interest in environmental, biomedical, and food sciences. Here we show that microbubbles can be formed and stabilized in a solution of low cost food-grade emulsifier (a mixture of saturated long-chain monoglycerides, diglycerides and sodium stearoyl-2-lactylate) in combination with polyethylene glycol (PEG)-40 stearate. Langmuir trough methods and fluorescence microscopy were combined to investigate the surface tension, interfacial elastic modulus, phase behavior and microstructure of monolayer shells coating these microbubbles. Our results strongly suggest that although the PEG40S is necessary to form microbubbles this component, as well as sodium stearoyl-2-lactylate, are "squeezed out" in the form of collapse aggregates. This process leaves a microbubble shell, composed of a condensed-phase low surface tension mono- and diglycerides mixture with some of the PEG40S and SSL2 remaining trapped between the condensed-phase domains. We find that other commercially available emulsifiers, containing unsaturated or bulky components unable to form condensed phases, do not to form or stabilize a microbubble layer, although they may form a foam, a finding that we relate to differences in surface tension.  相似文献   
607.
Using functionalized calix[4]arene carrier 1 in a PIM system, Hg(II) is transported with high selectivity from acidic aqueous source phase solutions of Cd(II), Hg(II) and Pb(II) with high NaNO3 concentration into aqueous receiving solutions containing EDTA. To gain insight into this transport selectivity, complexation studies of the three heavy metal perchlorate species by ligand 1 were conducted in acetonitrile. Although 1:1 complexation of the divalent heavy metal cation by 1 was observed for Cd(II), the stoichiometries were more complicated for Hg(II) and Pb(II). Selective Hg(II) transport across the PIM is attributed to both the strength and stoichiometry of the metal ion-carrier species forming at the source phase-membrane interphase and its stripping from the membrane into the receiving phase by EDTA.  相似文献   
608.
This work characterizes the impact of lipid symmetry/asymmetry on drying/rehydration reorganization in phase-separated dilauroylphosphatidylcholine (DLPC)/distearoylphosphatidylcholine (DSPC) supported lipid bilayers (SLBs) at the submicron and micron-scale. In addition the prevention of major drying/rehydration reorganization by the use of trehalose is demonstrated. Even though it was found using fluorescence microscopy that micrometer scale structure is preserved in the presence and absence of trehalose upon drying/rehydration, AFM and FRAP experiments successfully revealed major changes in the phase-separated structure such as defects, obstructions, lipid condensation, collapse structures, and complex incomplete DLPC-DSPC mixing/exchange in the absence of trehalose. In the presence of trehalose the membrane preserves its structure at the nanometer scale and mobility. We found that SLBs with asymmetric domain configurations underwent major rearrangements during drying and rehydration, whereas the symmetric domain configuration mainly rearranged during rehydration, that we hypothesize is related to lower transmembrane cohesiveness or lack of anchoring to the substrate in the case of the asymmetric domains.  相似文献   
609.
NiTiO3 (NTO) nanoparticles encapsulated with SiO2 were prepared by the sol–gel method resulting on core-shell structure. Changes on isoelectric point as a function of silica were evaluated by means of zeta potential. The NTO nanoparticles heat treated at 600°C were characterized by X-ray diffraction, transmission electron microscopy (TEM) and energy dispersive X-ray analysis. TEM observations showed that the mean size of NTO is in the range of 2.5–42.5 nm while the thickness of SiO2 shell attained 1.5–3.5 nm approximately.  相似文献   
610.
The present study is concerned with the structural and electronic properties of the TiO2/SnO2/TiO2 and SnO2/TiO2/SnO2 composite systems. Periodic quantum mechanical method with density functional theory at the B3LYP level has been carried out. Relaxed surface energies, structural characteristics and electronic properties of the (110), (010), (101) and (00) low-index rutile surfaces for TiO2/SnO2/TiO2 and SnO2/TiO2/SnO2 models are studied. For comparison purposes, the bare rutile TiO2 and SnO2 structures are also analyzed and compared with previous theoretical and experimental data. The calculated surface energy for both rutile TiO2 and SnO2 surfaces follows the sequence (110) < (010) < (101) < (001) and the energy increases as (010) < (101) < (110) < (001) and (010) approximately = (110) < (101) < (001) for SnO2/TiO2/SnO2 and TiO2/SnO2/TiO2 composite systems, respectively. SnO2/TiO2/SnO2 presents larger values of surface energy than the individual SnO2 and TiO2 metal oxides and the TiO2/SnO2/TiO2 system renders surface energy values of the same order that the TiO2 and lower than the SnO2. An analysis of the electronic structure of the TiO2/SnO2/TiO2 and SnO2/TiO2/SnO2 systems shows that the main characteristics of the upper part of the valence bands for all the studied surfaces are dominated by the external layers, i.e., by the TiO2 and the SnO2, respectively, and the topology of the lower part of the conduction bands looks like the core layers. There is an energy stabilization of both valence band top and conduction band bottom for (110) and (010) surfaces of the SnO2/TiO2/SnO2 composite system in relation to their core TiO2, whereas an opposite trend is found for the same surfaces of the TiO2/SnO2/TiO2 composite system in relation to the bare SnO2. The present theoretical results may explain the growth of TiO2@SnO2 bimorph composite nanotape.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号