首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   786篇
  免费   36篇
  国内免费   7篇
化学   484篇
晶体学   2篇
力学   66篇
数学   78篇
物理学   199篇
  2024年   1篇
  2023年   6篇
  2022年   23篇
  2021年   24篇
  2020年   29篇
  2019年   44篇
  2018年   51篇
  2017年   40篇
  2016年   50篇
  2015年   31篇
  2014年   60篇
  2013年   79篇
  2012年   81篇
  2011年   90篇
  2010年   42篇
  2009年   42篇
  2008年   38篇
  2007年   31篇
  2006年   18篇
  2005年   10篇
  2004年   11篇
  2003年   4篇
  2002年   4篇
  2000年   1篇
  1999年   1篇
  1996年   3篇
  1990年   4篇
  1989年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1978年   2篇
  1977年   1篇
  1970年   1篇
  1968年   1篇
排序方式: 共有829条查询结果,搜索用时 218 毫秒
41.
Journal of Analytical Chemistry - In this study, for the first time, the organic gas steam-liquid extraction by a special hand-made cell was used as a simple and inexpensive preconcentration...  相似文献   
42.
Journal of Thermal Analysis and Calorimetry - The ultimate goal of the present review paper is to summarize and discuss the findings of the most recently published literature on natural convection...  相似文献   
43.
44.
Type 2 diabetes mellitus is the result of resistance to insulin function along with inadequate insulin secretion, leading to a number of dysfunctions characterized by hyperglycemia, and it is associated with microvascular, macrovascular, and neuropathic complications. There is compelling evidence that the decline in both insulin sensitivity and insulin secretion has a genetic component. In addition, increasing evidence suggests that microRNAs (miRNAs) as key regulators of gene expression play significant roles in insulin production, secretion, and function that regulate the function of insulin-target tissues. The current review demonstrates the candidate genes and the related miRNAs involved in molecular pathogenesis of insulin resistance in type 2 diabetes mellitus. In doing so, it provides an opportunity for more focused investigations that may identify the genes and miRNAs with a role in the pathogenesis of type 2 diabetes mellitus and its treatment.  相似文献   
45.
A new disposable sensitive voltammetric sensor for the determination of Fe(III) based on a graphene (G) and piroxicam (Pir) modified screen printed carbon electrode (Pir/G/SPCE) has been developed. The developed method is based on accumulation of Fe(III) on the surface of the prepared sensor strip, formation a complex with Pir and subsequent reduction the adsorbed chelated Fe(III) at ?0.03 V (vs. Ag/AgCl) coupled with the catalytic enhancement of bromate. Characterizations of the modified electrode surface were performed by field emission scanning electron microscopy (FE‐SEM), energy dispersive X‐ray spectroscopy (EDX) and electrochemical impedance spectroscopy (EIS). Electrochemical behavior of the modified SPCEs was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Under the optimum conditions, the catalytic voltammetric method exhibited linear calibration plot in the concentration ranges of 1–100 ng mL?1 and 100–3500 ng mL?1 Fe(III) with a limit of detection of 0.3 ng mL?1. The sensor strip displayed good reproducibility with 1.7 % relative standard deviation (RSD%). The developed method was successfully applied for the determination of iron in food samples such as vegetables, fruit, and cereal.  相似文献   
46.

Safety issues of Li-ion batteries imposed by unfavorable thermal behavior accentuate the need for efficient thermal management systems to prevent the runaway conditions. To that end, a hybrid thermal management system is designed and further investigated numerically and experimentally in the present study. The passive cooling system is fabricated by saturating copper foam with paraffin as the phase change material (PCM) and integrated with an active cooling system with alumina nanofluid as the coolant fluid. Results for various Reynolds numbers and different heating powers indicate that the hybrid nanofluid cooling system can successfully fulfill safe operation of the battery during stressful operating conditions. The maximum time in which all PCM field is changed to the liquid phase is defined as the onset of the stressful conditions. Therefore, the start time of stressful conditions at 41 W and Re 420 is increased from 3700 s with nanofluid composed of 1% volume fraction nanoparticles (VF-1%) to 4600 s with nanofluid VF-2% during high current discharge rates. Nanofluid cooling extends the operating time of the battery in comparison with the water-based cooling system with 200-s (nanofluid with volume fraction of 1%) and 900-s (nanofluid with volume fraction of 2%) increases in operating time at Reynolds of 420. Using nanofluid, instead of water, postpones the onset of paraffin phase transition effectively and prolongs its melting time which consequently leads to a decrease in the rate of temperature rise.

  相似文献   
47.
Self-assembly of crystalline-coil block copolymers (BCPs) in selective solvents is often carried out by heating the mixture until the sample appears to dissolve and then allowing the solution to cool back to room temperature. In self-seeding experiments, some crystallites persist during sample annealing and nucleate the growth of core-crystalline micelles upon cooling. There is evidence in the literature that the nature of the self-assembled structures formed is independent of the annealing time at a particular temperature. There are, however, no systematic studies of how the rate of cooling affects self-assembly. We examine three systems based upon poly(ferrocenyldimethylsilane) BCPs that generated uniform micelles under typical conditions where cooling took pace on the 1–2 h time scale. For example, several of the systems generated elongated 1D micelles of uniform length under these slow cooling conditions. When subjected to rapid cooling (on the time scale of a few minutes or faster), branched structures were obtained. Variation of the cooling rate led to a variation in the size and degree of branching of some of the structures examined. These changes can be explained in terms of the high degree of supersaturation that occurs when unimer solutions at high temperature are suddenly cooled. Enhanced nucleation, seed aggregation, and selective growth of the species of lowest solubility contribute to branching. Cooling rate becomes another tool for manipulating crystallization-driven self-assembly and controlling micelle morphologies.

In the self-assembly of crystalline-coil block copolymers in solution, heating followed by different cooling rates can lead to different structures.  相似文献   
48.
A new approach was developed for modeling the effect of the third body on fretting. This was accomplished using the combined finite-discrete element method (FDEM) in which the third body is analyzed as discrete elements while the first bodies are modeled using finite elements. This approach provides a link between large scale models which treat the mass of wear debris as a single or small number of bodies and small scale models which only study a control volume. The FDEM was used to analyze the behavior of third body particles between flat sliding surfaces. When the third body mass is composed of unconnected particles, it behaves as a Newtonian fluid, but this behavior ceases when the particles are connected into platelets. The FDEM was also used to study the behavior of third body particles inside a Hertzian line contact. As the number of particles and platelet size increase the load carried by the worn slip zone grows larger in relationship to the unworn stick zone.  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号