首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   375篇
  免费   17篇
  国内免费   4篇
化学   229篇
晶体学   2篇
力学   51篇
数学   37篇
物理学   77篇
  2024年   1篇
  2023年   2篇
  2022年   18篇
  2021年   19篇
  2020年   21篇
  2019年   30篇
  2018年   29篇
  2017年   26篇
  2016年   17篇
  2015年   16篇
  2014年   29篇
  2013年   30篇
  2012年   43篇
  2011年   39篇
  2010年   19篇
  2009年   12篇
  2008年   12篇
  2007年   13篇
  2006年   4篇
  2005年   2篇
  2004年   5篇
  2003年   3篇
  2002年   1篇
  1996年   3篇
  1970年   1篇
  1968年   1篇
排序方式: 共有396条查询结果,搜索用时 446 毫秒
331.
This article presents a combined experimental and computational investigation of 3-amino-1-phenyl-2-buten-1-onato, APBO ligand and its copper(II) and nickel(II) complexes. APBO is an unsymmetrical, bidentate and monoanionic ligand with different coordinating atoms (N,O). A comparison among different possible conformers of the ligand has been carried out using density functional theory (DFT) method at the B3LYP/6-31+G(d,p) level. It was demonstrated that two factors control stability of the compounds as hydrogen bonding (conventional and nonconventional) and resonance effect. The effectiveness of each of these parameters on the stability of ligands is discussed. The prepared homoleptic complexes of [Ni(APBO)2] and [Cu(APBO)2] were characterized with IR, NMR, UV–Vis spectroscopic techniques. The X-ray crystallography of [Ni(APBO)2] demonstrated that the bidentate APBO binds to the metal center in trans fashion and the geometry around the nickel atom is square planar. The experimental studies on the complexes were accompanied computationally by the DFT and time-dependent DFT calculations.  相似文献   
332.
Nanocomposites of polyaniline(PANI) and the macrocycle thiacalix[4]arene tetra sulfonate(TCAS) were successfully synthesized in feed ratios of 1:0.25, 1:0.50 and 1:0.75 by three prevail synthetic methods, i.e. in situ polymerization, emulsion polymerization and solution casting technique. The structures of the nanocomposites were confirmed by FTIR, UV-Vis, XRD, SEM, and TEM techniques. The conductivity was measured by a four probe method. The conductivity was recorded to be as high as 105 × 10 2S cm 1for the nanocomposite with a nanometer size structure and homogeneously distributed morphology. The electroactivity of the nanocomposites was approved by cyclic voltammetry(CV) and impedance spectroscopy technique(EIS). The antioxidant ability and thermal property of the composites were further studied. Preliminary studies have evidenced the production of conductive nanocomposites with good thermal property and relatively good solubility in N-methyl 2-pyrrolidone(NMP), with the antioxidant activity reaching up to 80%.  相似文献   
333.

In the present article, a terminal sliding mode control strategy has been proposed in order to address the synchronization problem for a class of perturbed nonlinear systems with fixed convergence time and input quantization. The proposed protocol guarantees the fixed-time convergence of the sliding manifold to the origin, which means that the convergence time of the proposed sliding manifold does not change on the variations of initial values, different from typical control methods. Here, the hysteresis quantizer, as a specific type of quantizer with nonlinear sector-bounded, is applied in order to quantize the input signal. The proposed quantized control scheme vigorously prevents the potential adverse chattering phenomenon which is experienced in the common quantization methods. The proposed controller does not need the limiting criteria related to considered parameters of quantization compared to recent control approaches. Finally, the designed controller is implemented on the perturbed Genesio–Tesi (G–T) chaotic systems to verify effectiveness and strength of the proposed method.

  相似文献   
334.
The lattice Boltzmann method (LBM) for simulating fluid phases was coupled with the discrete element method (DEM) for studying solid phases to formulate a novel solver for fast discrete particle simulation (DPS) of particle–fluid flows. The fluid hydrodynamics was obtained by solving LBM equations instead of solving the Navier–Stokes equation by the finite volume method (FVM). Interparticle and particle–wall collisions were determined by DEM. The new DPS solver was validated by simulating a three-dimensional gas–solid bubbling fluidized bed. The new solver was found to yield results faster than its FVM–DEM counterpart, with the increase in the domain-averaged gas volume fraction. Additionally, the scalability of the LBM–DEM DPS solver was superior to that of the FVM–DEM DPS solver in parallel computing. Thus, the LBM–DEM DPS solver is highly suitable for use in simulating dilute and large-scale particle–fluid flows.  相似文献   
335.
In this paper, we study mass flow rate of rarefied gas flow through micro/nanoscale channels under simultaneous thermal and pressure gradients using the direct simulation Monte Carlo (DSMC) method. We first compare our DSMC solutions for mass flow rate of pure temperature-driven flow with those of Boltzmann-Krook-Walender equation and Bhatnagar-Gross-Krook solutions. Then, we focus on pressure–temperature-driven flows. The effects of different parameters such as flow rarefaction, channel pressure ratio, wall temperature gradient and flow bulk temperature on the thermal mass flow rate of the pressure–temperature-driven flow are examined. Based on our analysis, we propose a correlated relation that expresses normalized mass flow rate increment due to thermal creep as a function of flow rarefaction, normalized wall temperature gradient and pressure ratio over a wide range of Knudsen number. We examine our predictive relation by simulation of pressure-driven flows under uniform wall heat flux (UWH) boundary condition. Walls under UWH condition have non-uniform temperature distribution, that is, thermal creep effects exist. Our investigation shows that developed analytical relation could predict mass flow rate of rarefied pressure-driven gas flows under UWH condition at early transition regime, that is, up to Knudsen numbers of 0.5.  相似文献   
336.
Turbulent heat transfer in circular pipe flow with constant heat flux on the wall is investigated numerically via Large Eddy Simulations for frictional Reynolds number Re τ  = 180 and for Prandtl numbers in the range 0.1 ≤ Pr ≤ 1.0. In our simulations we employ a second-order finite difference scheme, combined with a projection method for the pressure, on a collocated grid in cylindrical coordinates. The predicted statistical properties of the velocity and temperature fields show good agreement with available data from direct numerical simulations. Further, we study the local thermal flow structures for different Prandtl numbers. As expected, our simulations predict that by reducing the Prandtl number, the range of variations in the local heat transfer and the Nusselt number decrease. Moreover, the thermal flow structures smear in the flow and become larger in size with less sharpness, especially in the vicinity of the wall. In order to characterize the local instantaneous heat transfer, probability density functions (PDFs) for the instantaneous Nusselt number are derived for different Prandtl number. Also, it is shown that these PDFs are actually scaled by the square root of the Prandtl number, so that a single PDF can be employed for all Prandtl numbers. The curve fits of the PDFs are presented in two forms of log-normal and skewed Gaussian distributions.  相似文献   
337.
An efficient synthesis of 8-hydroxy-6,7-dimethoxy-3-methylisocoumarin (6-O-methylreticulol), a metabolite of several fungal species possessing phosphodiesterase inhibitor, topoisomerase I inhibitor activities and antitumor efficacy, has been described. 3,4,5-Trimethoxyhomophthalic acid was refluxed with acetic anhydride in dry pyridine and the resulting 2,3,4-trimethoxy-6-(2-oxopropyl)benzoic acid was smoothly cyclodehydrated to 6,7,8-trimethoxy-3-methylisocoumarin using acetic anhydride. Regioselective demethylation of the latter yielded the 6-O-methylreticulol. __________ Published in Khimiya Geterotsiklicheskikh Soedinenii, No. 11, pp. 1644–1648, November, 2005.  相似文献   
338.
Functionalized 7,8-benzo-9-aza-4-oxabicyclo[3.3.1]nonan-3-ones were prepared by regio- and diastereoselective condensation of 1,1-bis(silyloxy)ketene acetals with isoquinolinium salts and subsequent regioselective and stereospecific iodolactonization.  相似文献   
339.
Electrochemical redox behavior of Fe-vit B6 complex is investigated in HEPES buffer in the pH range 5.1–13.1 using cyclic voltammetry. Well-defined anodic and cathodic peaks are observed in the voltammograms at pH 13.1. At pH 8.0, only one cathodic peak and at pH 5.1, only one anodic peak are found. At all the pH values, the peak potential separation is much higher than that of a reversible electrochemical reaction. The peak current ratio (i pa/i pc) is less than unity and decreases with the scan rate. Published in Russian in Elektrokhimiya, 2006, Vol. 42, No. 6, pp. 691–697. The text was submitted by the authors in English.  相似文献   
340.
This paper introduces a 3-D transient finite element model of laser cladding by powder injection to investigate the effects of laser pulse shaping on the process. The proposed model can predict the clad geometry as a function of time and process parameters including laser pulse shaping, travel velocity, laser pulse energy, powder jet geometry, and material properties. In the proposed strategy, the interaction between powder and melt pool is assumed to be decoupled and as a result, the melt pool boundary is first obtained in the absence of powder spray. Once the melt pool boundary is obtained, it is assumed that a layer of coating material is deposited on the intersection of the melt pool and powder stream in the absence of the laser beam in which its thickness is calculated based on the powder feedrate and elapsed time. The new melt pool boundary is then calculated by thermal analysis of the deposited powder layer, substrate and laser heat flux. The process is simulated for different laser pulse frequencies and energies. The results are presented and compared with experimental data. The quality of clad bead for different parameter sets is experimentally evaluated and shown as a function of effective powder deposition density and effective energy density. The comparisons show excellent agreement between the modeling and experimental results for cases in which a high quality clad bead is expected.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号