首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   381篇
  免费   16篇
  国内免费   4篇
化学   234篇
晶体学   2篇
力学   51篇
数学   37篇
物理学   77篇
  2024年   2篇
  2023年   2篇
  2022年   22篇
  2021年   19篇
  2020年   21篇
  2019年   30篇
  2018年   29篇
  2017年   26篇
  2016年   17篇
  2015年   16篇
  2014年   29篇
  2013年   30篇
  2012年   43篇
  2011年   39篇
  2010年   19篇
  2009年   12篇
  2008年   12篇
  2007年   13篇
  2006年   4篇
  2005年   2篇
  2004年   5篇
  2003年   3篇
  2002年   1篇
  1996年   3篇
  1970年   1篇
  1968年   1篇
排序方式: 共有401条查询结果,搜索用时 8 毫秒
311.
Journal of Fluorescence - The present study is set out to determine the photocatalytic degradation potential of ZnO nanoparticles for effective degradation of Eosin dye. The heterogeneous...  相似文献   
312.
Sodium alginate (SA) is a progressive material for membrane fabrication. The technological development of SA-based membranes has made a significant contribution to the separation techniques, especially in aqueous organic solutions. The outstanding performance of SA is attributed to its outstanding structural flexibility and hydrophilicity. In view of structural characteristics, SA membranes have immense utilization in the pervaporation separation of organics. Among various organics, dehydration of aqueous ethanol is employed as a standard to check the success of pervaporation (PV) membrane. Because ethanol and water have comparable molecular sizes, thus difficult to extract water from aqueous ethanol mixtures than it is for other organics. A literature survey shows that wide-ranging data are available on the PV performance of SA and its modified membranes. In this context, the present review addresses the recent advances made in SA membranes for enhanced ethanol dehydration performance during the last decade. Available data since 2010 has been compiled for grafted, crosslinked, blend, mixed matrix, and composite hybrid sodium alginate membranes in terms of separation factor, permeation flux, and pervaporation separation index PSI. The data are assessed with reference to the effect of feed composition, membrane selectivity, flux, and swelling behavior.  相似文献   
313.
314.
Journal of Solid State Electrochemistry - The Li[Li0.2Ni0.13-x + y/3Co0.13-x + y/3Mn0.54-x + y/3]Al x Zr y O2 was synthesized via conventional solution...  相似文献   
315.
In this work, a porous and flexible three‐dimensional (3D) nickel/gold nanoparticle electrode (NiF/AuNPs) is presented as an efficient electrocatalyst for ethanol oxidation in alkaline media. The 3D nanocomposite electrode consists of interconnected porous nickel foam (NiF) with large pores (500±200 μm diameter) surrounded by interconnected struts (~100 μm) that are decorated with gold nanoparticles (AuNPs, 37±8 nm) through in‐situ electrochemical deposition. The catalytic performance of the 3D electrode was evaluated by different electrochemical methods. An enhancement in the performance (about 253 %) and a remarkable decline in onset potential (about ~0.63 V) in comparison with pristine NiF for ethanol oxidation are demonstrated. This potential is lower than many reported results except palladium‐ and platinum‐based catalysts, which are expensive. It is shown that both hydroxyl anions and cations affect the ethanol oxidation on the 3D electrode. The interconnected porous structure provides efficient mass diffusivity, which along with its high specific surface area combined with the catalytic nature of AuNPs, may open new opportunities for in‐inexpensive and highly efficient electro‐oxidation of ethanol for energy applications.  相似文献   
316.
Optics and Spectroscopy - The length-dependent low-frequency terahertz absorption spectrum of the essential amino acid chains has been investigated. Since this special type of amino acids cannot be...  相似文献   
317.
Polydimethylsiloxane (PDMS) is the most commonly used membrane material for the separation of condensable vapors from lighter gases. In this study, a composite PDMS membrane was prepared and its gas permeation properties were investigated at various upstream pressures. A microporous cellulose acetate (CA) support was initially prepared and characterized. Then, PDMS solution, containing crosslinker and catalyst, was cast over the support. Sorption and permeation of C3H8, CO2, CH4, and H2 in the prepared composite membrane were measured. Using sorption and permeation data of gases, diffusion coefficients were calculated based on solution‐diffusion mechanism. Similar to other rubbery membranes, the prepared PDMS membrane advantageously exhibited less resistance to permeation of heavier gases, such as C3H8, compared to the lighter ones, such as CO2, CH4, and H2. This result was attributed to the very high solubility of larger gas molecules in the hydrocarbon‐based PDMS membrane in spite of their lower diffusion coefficients relative to smaller molecules. Increasing feed pressure increased permeability, solubility, and diffusion coefficients of the heavier gases while decreased those of the lighter ones. At constant temperature (25°C), empirical linear relations were proposed for permeability, solubility, and diffusion coefficients as a function of transmembrane pressure. C3H8/gas solubility, diffusivity, and overall selectivities were found to increase with increasing feed pressure. Ideal selectivity values of 9, 30, and 82 for C3H8 over CO2, CH4, and H2, respectively, at an upstream pressure of 8 atm, confirmed the outstanding separation performance of the prepared membrane. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
318.
In recent years, there has been an increase of interest in the flow of gases at relatively high pressures and high temperatures. Hydrodynamic calculation of the energy losses in the flow of gases in conduits, as well as through the porous media constituting natural petroleum reservoirs, requires knowledge of the viscosity of the fluid at the pressure and temperature involved. Although there are numerous publications concerning the viscosity of methane at atmospheric pressure, there appears to be little information available relating to the effect of pressure and temperature upon the viscosity. A survey of the literature reveals that the disagreements between published data on the viscosity of methane are common and that most investigations have been conducted over restricted temperature and pressure ranges. Experimental viscosity data for methane are presented for temperatures from 320 to 400 K and pressures from 3000 to 140000 kPa by using falling body viscometer. A summary is given to evaluate the available data for methane, and a comparison is presented for that data common to the experimental range reported in this paper. A new and reliable correlation for methane gas viscosity is presented. Predicted values are given for temperatures up to 400 K and pressures up to 140000 kPa with Average Absolute Percent Relative Error (EABS) of 0.794.  相似文献   
319.
The aim of this paper is to investigate Hyers–Ulam–Rassias stability of preserving lattice functional equation in various spaces. First, we prove stability of generalized preserving lattice functional equation in Banach lattices. Next, we show stability of preserving lattice cubic functional equation in Menger probabilistic normed Riesz spaces.  相似文献   
320.
This article deals with constructing a confidence interval for the reliability parameter using ranked set sampling. Some asymptotic and resampling-based intervals are suggested, and compared with their simple random sampling counterparts using Monte Carlo simulations. Finally, the methods are applied on a real data set in the context of agriculture.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号