首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3997篇
  免费   706篇
  国内免费   334篇
化学   2617篇
晶体学   54篇
力学   295篇
综合类   17篇
数学   399篇
物理学   1655篇
  2024年   16篇
  2023年   108篇
  2022年   144篇
  2021年   171篇
  2020年   162篇
  2019年   157篇
  2018年   158篇
  2017年   123篇
  2016年   217篇
  2015年   200篇
  2014年   229篇
  2013年   308篇
  2012年   382篇
  2011年   368篇
  2010年   248篇
  2009年   215篇
  2008年   239篇
  2007年   224篇
  2006年   214篇
  2005年   177篇
  2004年   129篇
  2003年   104篇
  2002年   82篇
  2001年   73篇
  2000年   82篇
  1999年   69篇
  1998年   65篇
  1997年   52篇
  1996年   55篇
  1995年   52篇
  1994年   28篇
  1993年   40篇
  1992年   39篇
  1991年   23篇
  1990年   21篇
  1989年   15篇
  1988年   11篇
  1987年   7篇
  1986年   6篇
  1985年   10篇
  1984年   1篇
  1983年   6篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1957年   1篇
排序方式: 共有5037条查询结果,搜索用时 15 毫秒
991.
Corrective matrix that is derived to restore consistency of discretization schemes can significantly enhance accuracy for the inside particles in the Moving Particle Semi‐implicit method. In this situation, the error due to free surface and wall boundaries becomes dominant. Based on the recent study on Neumann boundary condition (Matsunaga et al, CMAME, 2020), the corrective matrix schemes in MPS are generalized to straightforwardly and accurately impose Neumann boundary condition. However, the new schemes can still easily trigger instability at free surface because of the biased error caused by the incomplete/biased neighbor support. Therefore, the existing stable schemes based on virtual particles and conservative gradient models are applied to free surface and nearby particles to produce a stable transitional layer at free surface. The new corrective matrix schemes are only applied to the particles under the stable transitional layer for improving the wall boundary conditions. Three numerical examples of free surface flows demonstrate that the proposed method can help to reduce the pressure/velocity fluctuations and hence enhance accuracy further.  相似文献   
992.
We present a cooling scheme with a tripod configuration atomic ensemble trapped in an optomechanical cavity.With the employment of two different quantum interference processes,our scheme illustrates that it is possible to cool a resonator to its ground state in the strong cavity-atom coupling regime.Moreover,with the assistance of one additional energy level,our scheme takes a larger cooling rate to realize the ground state cooling.In addition,this scheme is a feasible candidate for experimental applications.  相似文献   
993.
Meng  Xia  Wang  Lizhen  Zhai  Yunge  Duan  Hongdong 《Research on Chemical Intermediates》2020,46(12):5517-5533
Research on Chemical Intermediates - Two novel Schiff-base fluorescent probes bearing different substituents were synthesized by the reaction of indole derivatives with 4-aminoantipyrine. The...  相似文献   
994.
The composition of fluorescent polymer nanoparticles, commonly referred to as carbon dots, synthesized by microwave-assisted reaction of citric acid and ethylenediamine was investigated by 13C, 13C{1H}, 1H─13C, 13C{14N}, and 15N solid-state nuclear magnetic resonance (NMR) experiments. 13C NMR with spectral editing provided no evidence for significant condensed aromatic or diamondoid carbon phases. 15N NMR showed that the nanoparticle matrix has been polymerized by amide and some imide formation. Five small, resolved 13C NMR peaks, including an unusual ═CH signal at 84 ppm (1H chemical shift of 5.8 ppm) and ═CN2 at 155 ppm, and two distinctive 15N NMR resonances near 80 and 160 ppm proved the presence of 5-oxo-1,2,3,5-tetrahydroimidazo[1,2-a]pyridine-7-carboxylic acid (IPCA) or its derivatives. This molecular fluorophore with conjugated double bonds, formed by a double cyclization reaction of citric acid and ethylenediamine as first shown by Y. Song, B. Yang, and coworkers in 2015, accounts for the fluorescence of the carbon dots. Cross-peaks in a 1H─13C HETCOR spectrum with brief 1H spin diffusion proved that IPCA is finely dispersed in the polyamide matrix. From quantitative 13C and 15N NMR spectra, a high concentration (18 ± 2 wt%) of IPCA in the carbon dots was determined. A pronounced gradient in 13C chemical-shift perturbations and peak widths, with the broadest lines near the COO group of IPCA, indicated at least partial transformation of the carboxylic acid of IPCA by amide or ester formation.  相似文献   
995.
A metal-free, visible-light-induced oxidative C−C bond cleavage of cycloketones with molecular oxygen is described. Cooperative Brønsted-acid catalysis and photocatalysis enabled selective C−C bond cleavage of cycloketones to generate an array of γ-, δ- and ϵ-keto esters under very mild conditions. Mechanistic studies indicate that singlet molecular oxygen (1O2) is responsible for this transformation.  相似文献   
996.
A non-oxidant and metal-free strategy for synthesizing iso-coumarin by using a continuous electrochemical microreactor to initiate an oxidative cyclization reaction of o-(1-alkynyl) benzoate and radicals. This efficient and clean continuous electrosynthesis method not only avoids the complicated gas protection operation and production of by-products in the batch processes, but also help to overcome the difficulty that batch metal catalysis and electrocatalysis are difficult to scale up, and has the potential for pilot-scale experiment.  相似文献   
997.
Improved charge extraction and wide spectral absorption promote power conversion efficiency of perovskite solar cells (PSCs). The state‐of‐the‐art carbon‐based CsPbBr3 PSCs have an inferior power output capacity because of the large optical band gap of the perovskite film and the high energy barrier at perovskite/carbon interface. Herein, we use alkyl‐chain regulated quantum dots as hole‐conductors to reduce charge recombination. By precisely controlling alkyl‐chain length of ligands, a balance between the surface dipole induced charge coulomb repulsive force and quantum tunneling distance is achieved to maximize charge extraction. A fluorescent carbon electrode is used as a cathode to harvest the unabsorbed incident light and to emit fluorescent light at 516 nm for re‐absorption by the perovskite film. The optimized PSC free of encapsulation achieves a maximum power conversion efficiency up to 10.85 % with nearly unchanged photovoltaic performances under 80 %RH, 80 °C, or light irradiation in air.  相似文献   
998.
Atomic regulation of metal catalysts has emerged as an intriguing yet challenging strategy to boost product selectivity. Here, we report a density functional theory‐guided atomic design strategy for the fabrication of a NiGa intermetallic catalyst with completely isolated Ni sites to optimize acetylene semi‐hydrogenation processes. Such Ni sites show not only preferential acetylene π‐adsorption, but also enhanced ethylene desorption. The characteristics of the Ni sites are confirmed by multiple characterization techniques, including aberration‐corrected high‐resolution scanning transmission electron microscopy and X‐ray absorption spectrometry measurements. The superior performance is also confirmed experimentally against a Ni5Ga3 intermetallic catalyst with partially isolated Ni sites and against a Ni catalyst with multi‐atomic ensemble Ni sites. Accordingly, the NiGa intermetallic catalyst with the completely isolated Ni sites shows significantly enhanced selectivity to ethylene and suppressed coke formation.  相似文献   
999.
1000.
The direct, nonoxidative conversion of methane on a silica-confined single-atom iron catalyst is a landmark discovery in catalysis, but the proposed gas-phase reaction mechanism is still open to discussion. Here, we report a surface reaction mechanism by computational modeling and simulations. The activation of methane occurs at the single iron site, whereas the dissociated methyl disfavors desorption into gas phase under the reactive conditions. In contrast, the dissociated methyl prefers transferring to adjacent carbon sites of the active center (Fe1©SiC2), followed by C−C coupling and hydrogen transfer to produce the main product (ethylene) via a key −CH−CH2 intermediate. We find a quasi Mars–van Krevelen (quasi-MvK) surface reaction mechanism involving extracting and refilling the surface carbon atoms for the nonoxidative conversion of methane on Fe1©SiO2 and this surface process is identified to be more plausible than the alternative gas-phase reaction mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号