Naturally occuring radioactive materials (NORM) are present in the environment and they can be concentrated by technical activities, particularly those involving natural resources. This article describes radioanalytical problems arising in the accurate determination of natural radionuclides in NORM and in the environment contaminated by NORM. The solution of these problems is of particular importance since the results can be used to estimate the dose to workers and to the population. A special emphasis is given to the reliability of the radiochemical methods and procedures applied for the detection and measurement of alpha or beta emitters by radiometric or non-radiometric techniques. 相似文献
It is well known that ammunition containing depleted uranium (DU) was used by NATO during the Balkan conflict. To evaluate the DU origin (natural uranium enrichment or spent nuclear fuel reprocessing) it is necessary to check the presence of activation products (236U, 239+240Pu, 241Am, 237Np, etc.) in the ammunition. Every transuranium element (TRU) was separated from the uranium matrix by extraction chromatography with microporous polyethylene (Icorene) supporting suitable stationary phases. Plutonium was separated by tri-n-octylamine (TNOA). 241Am was separated by TNOA and di(2ethylhexylphosphoric) acid (HDEHP). Neptunium also was separated by tri-n-octylamine using different conditions. After elution, the TRU elements were electroplated and counted by alpha spectrometry. The TRU decontamination factors from uranium were higher than 106. The final chemical yields ranged from 50 to 70%. The detection limit was 1?Bq?kg?1 for 0.10?g ammunition; 239 + 240Pu and 241Am concentrations in two penetrators were 26 and 70?Bq?kg?1 and <1 and 3.4?Bq?kg?1, respectively; the 237Np concentration in one penetrator was 30.1?Bq?kg?1. The presence of these anthropogenic radionuclides in the penetrators indicates that at least part of the uranium originated from the reprocessing of nuclear fuel, although because of their very low concentrations, the radiotoxicological effect is negligible. 相似文献
An integrated study of microclimate monitoring, IR thermography (IRT), gravimetric tests and portable unilateral nuclear magnetic resonance (NMR) was applied in the framework of planning emergency intervention on a very deteriorated wall painting in San Rocco church, Cornaredo (Milan, Italy). The IRT investigation supported by gravimetric tests showed that the worst damage, due to water infiltration, was localized on the wall painting of the northern wall. Unilateral NMR, a new non-destructive technique which measures the hydrogen signal of the moisture and that was applied directly to the wall, allowed a detailed map of the distribution of the moisture in the plaster underlying the wall panting to be obtained. With a proper calibration of the integral of the recorded signal with suitable specimens, each area of the map corresponded to an accurate amount of moisture. IRT, gravimetric tests and unilateral NMR applied to investigate the northern wall painting showed the presence of two wet areas separated by a dry area. The moisture found in the lower area was ascribed to the occurrence of rising damp at the bottom of the wall due to the slope of the garden soil towards the northern exterior. The moisture found in the upper area was ascribed to condensation phenomena associated with the presence of a considerable amount of soluble, hygroscopic salts. In the framework of this integrated study, IRT investigation and gravimetric methods validated portable unilateral NMR as a new analytical tool for measuring in situ and without any sampling of the distribution and amount of moisture in wall paintings. 相似文献
The isothermal crystallization behavior and the structure and morphology of isotactic poly(propylene) (iPP) and iPP/hydrogenated hydrocarbon resin (HR) 90/10 blend were analyzed. To cover the entire temperature range, isothermal crystallizations were studied using superfast calorimetry at a high cooling rate in the range 0 to 110 °C, and by conventional DSC at a low cooling rate in the range 120 to 140 °C. Structural and morphological changes due to the different thermal treatments were also analyzed. The complete crystallization curve ranging from Tg to Tm showed bimodal crystallization behaviors for both iPP and iPP/HR 90/10 blend. This result is explained by taking into consideration the polymorph properties of iPP. It is in fact assumed that the curve from Tg to 60 °C referred mainly to the crystallization kinetics of the iPP mesomorphic form by homogeneous nucleation, whereas the curve from 60 °C to Tm mainly represented the crystallization kinetic curve for the monoclinic α form by heterogeneous nucleation. This hypothesis is confirmed by the analysis of the structures obtained using wide angle X‐ray experiments. Moreover, the addition of HR to iPP causes a drastic reduction in the crystallization rate of iPP in both regions due to the diluent effect of the miscible resin.
Two new cholera toxin (CT) ligands (4 and 5) are described. The new ligands were designed starting from the known GM1 mimics 2 and 3 by replacement of their GalNAc residue with the C4 isomer GlcNAc. As predicted by molecular modelling, the conformational properties of the equivalent pairs 2-4 and 3-5 are very similar and their affinity for CT is of the same order of magnitude. NMR experiments have also proved that 5 occupies the GM1-binding site of the toxin and have revealed its bound conformation. 相似文献
Efficient and safe drug delivery has always been a challenge in medicine. The use of nanotechnology, such as the development of nanocarriers for drug delivery, has received great attention owing to the potential that nanocarriers can theoretically act as “magic bullets” and selectively target affected organs and cells while sparing normal tissues. During the last decades the formulation of surfactant vesicles, as a tool to improve drug delivery, brought an ever increasing interest among the scientists working in the area of drug delivery systems. Niosomes are self assembled vesicular nanocarriers obtained by hydration of synthetic surfactants and appropriate amounts of cholesterol or other amphiphilic molecules. Just like liposomes, niosomes can be unilamellar or multilamellar, are suitable as carriers of both hydrophilic and lipophilic drugs and are able to deliver drugs to the target site. Furthermore, niosomal vesicles, that are usually non-toxic, require less production costs and are stable over a longer period of time in different conditions, so overcoming some drawbacks of liposomes. 相似文献
A highly diastereoselective Diels-Alder reaction between cyclopentadiene and ethyl (Z)-2-N-Boc-amino-3-nitroacrylate in neat conditions affords the ethyl 2-t-butoxycarbonylamino-3-endo-nitro-bicyclo[2.2.1]hept-5-ene-2-exo-carboxylate: a new constrained carbocyclic amino acid. Catalytic hydrogenation of this cycloadduct gave the corresponding reduced norbornane derivative. A preliminary investigation into the chemistry of these two amino acids was performed. In particular, the epimerization to their corresponding 3-exo-nitro compounds by treatment both with acid and base was studied. From this study, valuable information on the endo/exo process at the C-3 carbon atom, as well as on the stability of the different stereomers, was obtained. The stability is closely related to the presence or the absence of the double bond in the ring and to the substitution pattern. Finally, deprotection of the amino acid function has been performed. 相似文献
Terahertz (THz) spectroscopy and imaging have been heralded for some time as potentially revolutionary techniques for biomedical applications. Label‐free detection of molecules and recognition of molecular events are often mentioned as the most exciting possibilities. A crucial practical goal, however, is the ability to perform such measurements on tiny amounts of biological fluids or even on individual organic structures. Living cells, for instance, have diameters at most of some tens of micrometers, i.e. at least λ/10 even for few‐THz radiation. Furthermore, all analyses relevant for a biological perspective must be performed in a water environment, which presents a strong absorption across the whole THz spectral range, severely limiting the penetration of the electromagnetic field. Here, it is shown how both issues can be overcome with a lab‐on‐a‐chip approach based on a microfluidic platform coupled to a plasmonic antenna. Using a quantum cascade laser as THz illumination source, liquid volumes down to the picoliter range are probed, and direct operation on individual 10‐µm diameter microparticles flowing in water is shown. The present demonstration opens the way to the development of THz biosensing of individual living cells and small probe volumes. 相似文献