首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
力学   6篇
物理学   6篇
  2021年   1篇
  2018年   1篇
  2014年   2篇
  2012年   3篇
  2011年   1篇
  2009年   2篇
  2006年   2篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
11.
This paper focuses on the oscillation threshold of single reed instruments. Several characteristics such as blowing pressure at threshold, regime selection, and playing frequency are known to change radically when taking into account the reed dynamics and the flow induced by the reed motion. Previous works have shown interesting tendencies, using analytical expressions with simplified models. In the present study, a more elaborated physical model is considered. The influence of several parameters, depending on the reed properties, the design of the instrument or the control operated by the player, are studied. Previous results on the influence of the reed resonance frequency are confirmed. New results concerning the simultaneous influence of two model parameters on oscillation threshold, regime selection and playing frequency are presented and discussed. The authors use a numerical continuation approach. Numerical continuation consists in following a given solution of a set of equations when a parameter varies. Considering the instrument as a dynamical system, the oscillation threshold problem is formulated as a path following of Hopf bifurcations, generalizing the usual approach of the characteristic equation, as used in previous works. The proposed numerical approach proves to be useful for the study of musical instruments. It is complementary to analytical analysis and direct time-domain or frequency-domain simulations since it allows to derive information that is hardly reachable through simulation, without the approximations needed for analytical approach.  相似文献   
12.
The radial responses of free and encapsulated microbubbles excited by an ultrasonic plane wave with a large wavelength in comparison with the bubble size are governed by NonLinear Ordinary Differential Equations (NL-ODEs). The nonlinear frequency response gives the harmonic content of the time response and constitutes the expected outcome of a high order harmonic analysis. In this paper, high order harmonic balance analysis of modified “RPNNP” (bubble), Hoff and Marmottant (contrast agents) models is performed with an open-source software program. For this purpose, the original NL-ODEs are recast into nonlinear systems in which the nonlinearities are at most quadratic. In the spectral domain, this recast provides close form and aliasing-free solutions of arbitrarily large numbers of harmonics. Relevant quantities such as primary and secondary resonances and the nonlinear amplitude threshold of the excitation wave are evaluated. The frequency curves drawn up characterize the bending and quantify the jump frequencies and amplitudes of each harmonic component. The results obtained with this predictive method confirm that it should provide a useful tool for nonlinear bubble detection and sizing and for contrast agent designing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号