首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   32篇
  国内免费   9篇
化学   114篇
力学   4篇
数学   6篇
物理学   39篇
  2024年   1篇
  2023年   7篇
  2022年   11篇
  2021年   7篇
  2020年   15篇
  2019年   10篇
  2018年   13篇
  2017年   6篇
  2016年   17篇
  2015年   6篇
  2014年   13篇
  2013年   11篇
  2012年   12篇
  2011年   14篇
  2010年   12篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2006年   1篇
  1999年   1篇
排序方式: 共有163条查询结果,搜索用时 15 毫秒
41.
42.
Green, practical, and efficient hydrothiolation of 2,2′-dithiosalicylic acid to terminal alkynes was found to proceed smoothly in water under mild reaction conditions with moderate to good yields. The use of metal catalysts and toxic solvents was avoided, and good to excellent stereoselectivity and regioselectivity were obtained. Herein, the reaction conditions and regioselectivity are discussed, and a preliminary reaction mechanism is proposed.  相似文献   
43.
44.
45.
46.
Nanoparticles co-sensitized nanorods were designed and prepared by assembled CdS and PbS nanoparticles over ZnO nanorods using successive ionic layer adsorption and reaction (SILAR) method. The results showed that the uniform CdS and PdS nanoparticles could be deposited on the lateral and top of the ZnO nanorods when the precursor concentration was 0.05 M and 0.02 M, respectively. Solar cells based on CdS and PbS nanoparticles sensitized ZnO nanorods arrays were assembled successfully. A cell efficiency of 0.38% was obtained in ZnO/CdS/PbS in comparison with ZnO/PbS/CdS mainly due to the stepwise band edge structure constructed in this system except the coverage density of nanoparticles.  相似文献   
47.
This study is devoted to the thermal decomposition of ZnC2O4·2H2O, which was synthesized by solid-state reaction using C2H2O4·2H2O and Zn(CH3COO)2·2H2O as raw materials. The initial samples and the final solid thermal decomposition products were characterized by Fourier transform infrared and X-ray diffraction. The particle size of the products was observed by transmission electron microscopy. The thermal decomposition behavior was investigated by thermogravimetry, derivative thermogravimetric and differential thermal analysis. Experimental results show that the thermal decomposition reaction includes two stages: dehydration and decomposition, with nanostructured ZnO as the final solid product. The Ozawa integral method along with Coats–Redfern integral method was used to determine the kinetic model and kinetic parameters of the second thermal decomposition stage of ZnC2O4·2H2O. After calculation and comparison, the decomposition conforms to the nucleation and growth model and the physical interpretation is summarized. The activation energy and the kinetic mechanism function are determined to be 119.7 kJ mol?1 and G(α) = ?ln(1 – α)1/2, respectively.  相似文献   
48.
Triple‐layered Ag@Co@Ni core–shell nanoparticles (NPs) containing a silver core, a cobalt inner shell, and a nickel outer shell were formed by an in situ chemical reduction method. The thickness of the double shells varied with different cobalt and nickel contents. Ag0.04@Co0.48@Ni0.48 showed the most distinct core–shell structure. Compared with its bimetallic core–shell counterparts, this catalyst showed higher catalytic activity for the hydrolysis of NH3BH3 (AB). The synergetic interaction between Co and Ni in Ag0.04@Co0.48@Ni0.48 NPs may play a critical role in the enhanced catalytic activity. Furthermore, cobalt–nickel double shells surrounding the silver core in the special triple‐layered core–shell structure provided increasing amounts of active sites on the surface to facilitate the catalytic reaction. These promising catalysts may lead to applications for AB in the field of fuel cells.  相似文献   
49.
Lan J  Hu J  Li B  Xing D  Liu C  Wang W  Du L 《Biomedical chromatography : BMC》2008,22(11):1201-1205
Quantification of brazilein in rat plasma following intravenous administration was achieved by reversed-phase high-performance liquid chromatography using a mobile phase of acetonitrile-0.05 m potassium dihydrogen phosphate water (containing 0.5% triethylamine, pH 3.0; 20:80 v/v) and UV detection at 445 nm. The method was linear (determination coefficient, r(2) = 0.9992) within the tested range (0.313-5.0 microg/mL). Intra- and inter-day precision coefficients of variation and accuracy bias were acceptable (maximal CV value was 2.06% for intra-day and 1.71% for inter-day) over the entire range. The recoveries were 81.48, 84.61 and 82.83% for concentrations of 0.313, 1.25 and 5.0 microg/mL, respectively. The concentration-time curve of brazilein after intravenous administration was fitted to the two-compartment model. This is the first time that brazilein in rat plasma was detected by HPLC-UV method and its pharmacokinetic characteristic was comprehensively studied.  相似文献   
50.
The incorporation of insulating polymers into conjugated polymers has been widely explored as a strategy to improve mechanical properties of flexible organic electronics. However, phase separation due to the immiscibility of these polymers has limited their effectiveness. In this study, we report the discovery of multiple non-covalent interactions that enhances the miscibility between insulating and conjugated polymers, resulting in improved mechanical properties. Specifically, we have added polyvinyl chloride (PVC) into the conjugated polymer PM6 and observed a significant increase in solution viscosity, indicative of favorable miscibility between these two polymers. This phenomenon has been rarely observed in other insulating/conjugated polymer composites. Thin films of PM6/PVC exhibit a much-improved crack-onset strain of 19.35 %, compared to 10.12 % for pristine PM6 films. Analysis reveal that a “cyclohexyl-like” structure formed through dipole-dipole interactions and hydrogen bonding between PVC and PM6 acted as a cross-linking site in the thin films, leading to improved mechanical properties. Moreover, PM6/PVC blend films have demonstrated excellent thermal and bending stability when applied as an electron donor in organic solar cells. These findings provide new insights into non-covalent interactions that can be utilized to enhance the properties of conjugated polymers and may have potential applications in flexible organic electronics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号