首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1007篇
  免费   36篇
  国内免费   9篇
化学   733篇
晶体学   17篇
力学   20篇
数学   49篇
物理学   233篇
  2024年   2篇
  2023年   10篇
  2022年   14篇
  2021年   32篇
  2020年   20篇
  2019年   22篇
  2018年   15篇
  2017年   16篇
  2016年   32篇
  2015年   31篇
  2014年   40篇
  2013年   76篇
  2012年   92篇
  2011年   90篇
  2010年   63篇
  2009年   38篇
  2008年   77篇
  2007年   58篇
  2006年   56篇
  2005年   62篇
  2004年   41篇
  2003年   36篇
  2002年   37篇
  2001年   20篇
  2000年   17篇
  1999年   12篇
  1998年   9篇
  1997年   4篇
  1996年   3篇
  1995年   7篇
  1994年   1篇
  1993年   3篇
  1992年   6篇
  1991年   1篇
  1989年   5篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1981年   1篇
排序方式: 共有1052条查询结果,搜索用时 15 毫秒
171.
We present EQCM study for the electrochemical behavior of various 1-methyl-1'-alkylvilogen (C1CnV:n=1, 7-10, 12, 14,16, 18). In some viologens, we discussed the mechanism of CD-induced comproportionation reaction as well as electrodeposition pathway based on the EQCM and the spectroelectrochemical experimental results.  相似文献   
172.
173.
The water sorption behavior and the activation energy were investigated for various chemical structure polyimide thin films; BPDA‐PDA, BPDA‐ODA, PMDA‐ODA, and 6FDA‐ODA. The activation energy for the water diffusion varied in the range of 5.53 to 9.27kcal/mol, and was in the increasing order: BPDA‐PDA < BPDA‐ODA < PMDA‐ODA < 6FDA‐ODA. BPDA‐PDA and BPDA‐ODA polyimide films showed relatively well‐ordered morphological structure, which results in relatively low diffusion coefficient and high activation energy. It was found that the diffusion coefficient and the activation energy are significantly related to the in‐plane orientation, crystallinity, and packing order in the polyimide thin films. The morphological structure was predominant factors for the water diffusion coefficient and activation energy in the polyimide thin films. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2714–2720, 2000  相似文献   
174.
175.
The swelling behavior of polyelectrolyte gels based on poly(diallyldimethylammonium chloride) (copolymers of diallyldimethylammonium chloride and acrylamide with the variable composition) and poly(methacrylic acid, sodium salt) in the presence of organic water soluble dyes (alizarin, naphthol blue black, rhodamine) was studied. The collapse of the polyelectrolyte gels in the presence of oppositely charged dyes together with the effective absorption of dyes was observed. The shrinking degree and the dye absorption by the gel depend on the charges of the polymer network and the dye, and also on the dye concentration. Stability of the gel–dye complexes in a salt solution of NaCl and Al2(SO4)3 was studied. It was shown that the complex stability in the salt solution depends on the charge density of the polymer chains forming the gel. The increase of charge density of polymer generally leads to the enhancement of the complex stability. For the systems with the fraction of charged poly(diallyldimethylammonium chloride) monomer units above 0.5 the release of alizarin to the external solution of Al2(SO4)3 reservoir is practically completely suppressed. The obtained results show that oppositely charged dyes are generally from stable complexes with polyelectrolyte gels. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1209–1217, 1999  相似文献   
176.
The surface of the taro plant leaf was replicated using a nanoimprinting technique (NIT) supplemented with an electric field. This field‐aided nanoimprinting method (FA‐NIT) consists of two steps: applying an electric field to a liquid polymer under the plant leaves and the curing process of the polymer with the applied electric field. An appropriate electric field was needed to induce the electrokinetic phenomena of a liquid polymer to obtain a good replicated surface. The roughness fabricated by the FA‐NIT was about 45% higher than the one prepared by NIT. The FA‐NIT method is a good supplementary technique to improve the quality of NIT.

  相似文献   

177.
Interaction chromatography has been employed to validate that adsorption of poly[styrene‐co‐(4‐bromostyrene)] (PBrxS) random copolymers, where x denotes the mole fraction of 4‐bromostyrene (4–BrS) in PBrxS in solution depends on the average number of adsorptive segments, the type of adsorbing substrate, and on the co‐monomer sequence distribution in PBrxS.

  相似文献   

178.
Nanoscale laser processing and diagnostics   总被引:2,自引:0,他引:2  
The article summarizes research activities of the Laser Thermal Laboratory on pulsed nanosecond and femtosecond laser-based processing of materials and diagnostics at the nanoscale using optical-near-field processing. Both apertureless and apertured near-field probes can deliver highly confined irradiation at sufficiently high intensities to impart morphological and structural changes in materials at the nanometric level. Processing examples include nanoscale selective subtractive (ablation), additive (chemical vapor deposition), crystallization, and electric, magnetic activation. In the context of nanoscale diagnostics, optical-near-field-ablation-induced plasma emission was utilized for chemical species analysis by laser-induced breakdown spectroscopy. Furthermore, optical-near-field irradiation greatly improved sensitivity and reliability of electrical conductance atomic force microscopy enabling characterization of electron tunneling through the oxide shell on silicon nanowires. Efficient in-situ monitoring greatly benefits optical-near-field processing. Due to close proximity of the probe tip with respect to the sample under processing, frequent degradation of the probe end occurs leading to unstable processing conditions. Optical-fiber-based probes have been coupled to a dual-beam (scanning electron microscopy and focused ion beam) system in order to achieve in-situ monitoring and probe repair.  相似文献   
179.
Three-dimensional flow-through microchannels were fabricated inside bulk fused silica glass via ultrashort pulsed laser direct writing. The device fabrication sequence takes advantage of the nonlinear volumetric absorption in glass and the subsequent preferential chemical etching process. Optical waveguides were also written into the glass specimen and integrated with the fluidic conduits. Flow tests using both fluorescent particles and red blood cells (RBCs) were conducted on various three-dimensional channel configurations. Experiments showed the possibility for laser-induced cell processing inside the microchannels. To evaluate cytometer functionality, RBCs were detected inside the manufactured microchannel via both transmission and fluorescence probing.  相似文献   
180.
The characteristics of boiling and critical heat flux (CHF) behavior of nano-fluids with alumina and silver nano-particles suspended in de-ionized water (pure water) were studied with circular plate heaters in the present study. Enhancements of CHF in nano-fluids in the wide range of particle sizes and concentrations were compared with those in pure water. Also, the effects of the particle deposition on CHF enhancement were investigated. All experiments were performed at the atmospheric pressure condition. The results show that the measured boiling curves in nano-fluids were shifted to the right and CHF were significantly enhanced for different nano-particle sizes and concentrations. The CHF of nano-fluids was increased as the size of the nano-particles decreased. On the other hand, nano-particle concentration value showing the maximum CHF had a critical value. In each pool boiling experiment of nano-fluids, nano-particles were deposited on the heater surface. Assuming that this phenomenon caused the CHF enhancement, pool boiling experiments of pure water were carried out with these nano-particle deposited heaters. The results of these tests were similar to those of the test of the nano-fluids for the CHF enhancement. The main cause of CHF enhancement was found to be the change of the heater surface structure. In order to analyze boiling phenomena of pure water and Al2O3 nano-fluids, boiling process was visualized by using a high speed camera.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号