首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   1篇
化学   86篇
力学   15篇
数学   12篇
物理学   10篇
  2022年   2篇
  2021年   4篇
  2020年   1篇
  2019年   4篇
  2018年   2篇
  2017年   1篇
  2016年   4篇
  2015年   1篇
  2014年   3篇
  2013年   6篇
  2012年   9篇
  2011年   10篇
  2010年   8篇
  2009年   11篇
  2008年   7篇
  2007年   11篇
  2006年   4篇
  2005年   4篇
  2004年   5篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1992年   4篇
  1989年   1篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1931年   1篇
排序方式: 共有123条查询结果,搜索用时 15 毫秒
31.
Surface shear viscosity of food emulsifiers may contribute appreciably to the long-term stability of food dispersions (emulsions and foams). In this work we have analyzed the structural, topographical, and shear characteristics of a whey protein isolate (WPI) and monoglyceride (monopalmitin and monoolein) mixed films spread on the air-water interface at pH 7 and at 20 degrees C. The surface shear viscosity (etas) depend on the surface pressure and on the composition of the mixed film. The surface shear viscosity varies greatly with the surface pressure. In general, the greater the surface pressure, the greater are the values of etas. The values of etas for the mixed WPI-monoolein monolayer were more than one order of magnitude lower than those for a WPI-monopalmitin mixed film, especially at the higher surface pressures. At higher surface pressures, collapsed WPI residues may be displaced from the interface by monoglyceride molecules with important repercussions on the shear characteristics of the mixed films. A shear-induced change in the topography and a segregation between domains of the film forming components were also observed. The displacement of the WPI by the monoglycerides is facilitates under shear conditions, especially for WPI-monoolein mixed films.  相似文献   
32.
Journal of Thermal Analysis and Calorimetry - Cupuassu (Theobroma grandiflorum Schum.) is a typical Amazonian fruit, whose seed is used as raw material to produce cupulate. The by-product of its...  相似文献   
33.
34.
The synthesis, thermal, and gas transport properties of poly(benzophenone isophthalamide), DBF/ISO, poly(benzophenone‐5‐tert‐butylisophthalamide), DBF/TERT, homopolymers, and their copolyamides with different DBF/TERT ratios are reported. The results indicate that the glass transition temperatures of the copolyamides increase as the concentration of DBF/TERT in the polyamide increases. The gas permeability coefficients for DBF/ISO are around 10?2 Barrers for O2 which situates this polymer as a barrier polymer. It was also found that permeability coefficients in all polyamides and copolyamides are independent of pressure for He or decrease slightly particularly with O2, CO2, and N2. It was seen that DBF/TERT is up to 15 times more permeable than DBF/ISO, depending on the gas being considered. This behavior was assigned to the presence of the bulky lateral substituent, the tert‐butyl group, in DBF/TERT and DBF/TERT‐co‐DBF/ISO copolyamides. This bulky substituent increases fractional free volume and interchain spacing; as a consequence, the gas permeability and diffusion coefficients generally increase. The experimental results for the gas permeability coefficients and permselectivity for the copolyamides was well represented by a semilogarithmic mixing rule of the homopolyamides permeability coefficients as a function of their volume fraction. The selectivity of gas pairs, such as He/O2 and He/CO2, decreased slightly with the addition of DBF/TERT. The temperature dependence of permeability for homopolyamides and copolyamides can be described by an Arrhenius type equation. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2083–2096, 2007  相似文献   
35.
A short chemoenzymatic formal synthesis of oseltamivir from ethyl benzoate has been achieved. The key steps involve a toluene dioxygenase‐mediated dihydroxylation, hetero‐Diels–Alder cycloaddition, and generation of C4 acetamido functionality. The formal synthesis of oseltamivir is achieved in ten steps and incorporates a unique translocation of the olefin with concomitant elimination of the C2 hydroxy group (see scheme).

  相似文献   

36.
In this work we have analyzed the penetration of betalactoglobulin into a monoglyceride monolayer (monopalmitin or monoolein) spread at the air-water interface and its effects on the structural, dilatational, and topographical characteristics of mixed films. Dynamic tensiometry, surface film balance, Brewster angle microscopy (BAM), and surface dilatational rheology have been used, maintaining the temperature constant at 20 degrees C and the pH and ionic strength at 7 and 0.05 M, respectively. The initial surface pressure (mN/m) of the spread monoglyceride monolayer (pii(MONOGLYCERIDE)) at 10, 20, and the collapse point is the variable studied. Beta-lactoglobulin can penetrate into a spread monoglyceride monolayer at every surface pressure. The penetration of beta-lactoglobulin into the monoglyceride monolayer with a more condensed structure, at the collapse point of the monoglyceride, requires monoglyceride molecular loss by collapse and/or desorption. However, the structural, topographical, and dilatational characteristics of monoglyceride penetrated by beta-lactoglobulin mixed monolayers are essentially dominated by the presence of monoglyceride (either monopalmitin or monoolein) in the mixed film. In fact, monoglyceride molecules have the capacity to re-enter the monolayer after expansion and recompression of the mixed monolayer. Thus, monoglyceride molecular loss by collapse and/or desorption is reversible. The topography of the monolayer under dynamic conditions corroborates these conclusions.  相似文献   
37.
38.
In the present work we have studied the characteristics of propylene glycol alginates (PGA) adsorption at the air–water interface and the viscoelastic properties of the films in relation to its foaming properties. To evaluate the effect of the degree of PGA esterification and viscosity, different commercial samples were studied—Kelcoloid O (KO), Kelcoloid LVF (KLVF) and Manucol ester (MAN). The temperature (20 °C) and pH (7.0) were maintained constant. For time-dependent surface pressure measurements and surface dilatational properties of adsorbed PGA at the air–water interface an automatic drop tensiometer was used. The foam was generated by whipping and then the foam capacity and stability was determined. The results reveal a significant interfacial activity for PGA due to the hydrophobic character of the propylene glycol groups. The kinetics of adsorption at the air–water interface can be monitored by the diffusion and penetration of PGA at the interface. The adsorbed PGA film showed a high viscoelasticity. The surface dilatational modulus depends on the PGA and its concentration in the aqueous phase. Foam capacity of PGA solutions increased in the order KO > MAN > KLVF, which followed the increase in surface pressure and the decrease in the viscosities of PGA solutions. The stability of PGA foams monitored by the drainage rate and collapse time follows the order MAN > KLVF > KO. The foam stability depends on the combined effect of molecular weight/degree of esterification of PGA, solution viscosity and viscoelasticity of the adsorbed PGA film.  相似文献   
39.
Knowledge of the complexes formed by N-coordinating ligands and Cu(II) ions is of relevance in understanding the interactions of this ion with biomolecules. Within this framework, we investigated Cu(II) complexation with mono- and polydentate ligands, such as ammonia, ethylenediamine (en), and phthalocyanine (Pc). The obtained Cu-N coordination distances were 2.02 A for [Cu(NH(3))(4)](2+), 2.01 A for [Cu(en)(2)](2+), and 1.95 A for CuPc. The shorter bond distance found for CuPc is attributed to the macrocyclic effect. In addition to the structure of the first shell, information on higher coordination shells of the chelate ligands could be extracted by EXAFS, thus allowing discrimination among the different coordination modes. This was possible due to the geometry of the complexes, where the absorbing Cu atoms are coplanar with the four N atoms forming the first coordination shell of the complex. For this reason multiple scattering contributions become relevant, thus allowing determination of higher shells. This knowledge has been used to gain information about the structure of the 1:2 complexes formed by Cu(II) ions with the amino acids histidine and glycine, both showing a high affinity for Cu(II) ions. The in-solution structure of these complexes, particularly that with histidine, is not clear yet, probably due to the various possible coordination modes. In this case the square-planar arrangements glycine-histamine and histamine-histamine as well as tetrahedral coordination modes have been considered. The obtained first-shell Cu-N coordination distance for this complex is 1.99 A. The results of the higher shells EXAFS analysis point to the fact that the predominant coordination mode is the so-called histamine-histamine one in which both histidine molecules coordinate Cu(II) cations through N atoms from the amino group and from the imidazole ring.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号