首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   2篇
  国内免费   3篇
化学   49篇
晶体学   1篇
力学   2篇
数学   31篇
物理学   55篇
  2022年   2篇
  2021年   3篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2014年   5篇
  2013年   4篇
  2012年   8篇
  2011年   7篇
  2010年   11篇
  2009年   9篇
  2008年   8篇
  2007年   8篇
  2006年   11篇
  2005年   5篇
  2004年   4篇
  2003年   7篇
  2002年   6篇
  2001年   4篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1992年   4篇
  1991年   2篇
  1989年   1篇
  1985年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有138条查询结果,搜索用时 15 毫秒
41.
Superparamagnetic iron oxide (SPIO) nanoparticles show great promise for many biotechnological applications. This paper addresses the synthesis and characterization of SPIO nanoparticles grafted with three different alkoxysilanes: 3-aminopropyl-triethoxysilane (APTES), 3-aminopropyl-ethyl-diethoxysilane (APDES) and 3-aminopropyl-diethy-ethoxysilane (APES). SPIO nanoparticles with an average particle diameter of 10 nm were prepared by chemical sonoprecipitation. As confirmed by Fourier transform infrared (FTIR) spectroscopy, silylation of these nanoparticles occurs through a two-step process. Decreasing the number of alkoxide groups reduced the concentration of free amino groups on the SPIO surface ([SPIO-NH2]—APTES>APDES>APES). This phenomenon results from steric contributions and the formation of H-bonded amines provided by the ethyl groups present in the APDES and APES molecules. A simulation of SPIO nanoparticles in a saline physiologic solution shows that the ethyl groups impart larger steric stability onto the ferrofluids, which reduces aggregation. The magnetization (M) versus magnetic field (H) curves show that the synthesized iron oxide nanoparticles display superparamagnetic behavior. The zero-field cooling (ZFC) and field cooling (FC) curves show that the changes in the blocking temperature depend on the alkoxysilane-functionalized particle surface.  相似文献   
42.
An exact solution of Einstein’s equations representing the static gravitational field of a quasi-spherical source endowed with both mass and mass quadrupole moment is considered. It belongs to the Weyl class of solutions and reduces to the Schwarzschild solution when the quadrupole moment vanishes. The geometric properties of timelike circular orbits (including geodesics) in this spacetime are investigated. Moreover, a comparison between geodesic motion in the spacetime of a quasi-spherical source and non-geodesic motion of an extended body also endowed with both mass and mass quadrupole moment as described by Dixon’s model in the gravitational field of a Schwarzschild black hole is discussed. Certain “reciprocity relations” between the source and the particle parameters are obtained, providing a further argument in favor of the acceptability of Dixon’s model for extended bodies in general relativity.  相似文献   
43.
Primary and secondary masses of heavy reaction products have been deduced from kinematics and E-ToF measurements, respectively, for the direct and reverse collisions of 93Nb and 116Sn at 25 AMeV. Light charged particles have also been measured in coincidence with the heavy fragments. Direct experimental evidence of the correlation of energy-sharing with net mass transfer has been found using information from both the heavy fragments and the light charged particles. The ratio of hydrogen and helium multiplicities points to a further correlation of angular momentum sharing with net mass transfer. Received: 18 September 2000 / Accepted: 2 December 2000  相似文献   
44.
GeFe2O4, also known as brunogeierite, is a rare mineral of germanium. It has a normal spinel structure and, as with many other spinels, amazing functional properties thanks to its peculiar structural features. In the past, its spectroscopic, optical, magnetic and electronic properties were determined; then, for many years, this compound was left behind. Only recently, a renewed interest in this oxide has arisen, particularly for its application in the electrochemical field. In this review paper, the crystal structure of GeFe2O4 will be described, as well as the synthesis methods required to obtain single crystals or polycrystalline powders. Its spectroscopic, magnetic, optical and electrical properties will be reported in detail. Then, successful applications known so far will be described: its use as anode in Lithium Ion and Sodium Ion Batteries and as electrocatalyst for urea oxidation reaction.  相似文献   
45.
Peng  Haixia  Hui  Yuanyuan  Ren  Rong  Wang  Bini  Song  Shuanghong  He  Yaping  Zhang  Fuxin 《Journal of Solid State Electrochemistry》2019,23(12):3391-3398
Journal of Solid State Electrochemistry - Cronobacter sakazakii (C. sakazakii) can cause extremely high mortality diseases especially in infants, so it is necessary to rapidly and specifically...  相似文献   
46.
New experimental results on pre-equilibrium effects and neck emission at Fermi energies are presented. Coulomb trajectory calculations have been performed to explain the observed IMF velocity distributions.  相似文献   
47.
The phase diagram of propene has been investigated at high pressure by using the diamond anvil cell technique and Fourier transform infrared spectroscopy. The pressure conditions necessary to induce a spontaneous reaction of the sample have been found at different temperatures, allowing the stability boundary of propene to be drawn. The reaction is diffusion controlled and seems to occur only in the fluid phase, implying a slope inversion of the stability boundary at about 250 K. The product of the reaction is a mixture of linear oligomers independently of the P-T conditions. The activation volume and energy of the process have been obtained from the kinetic data. Also the activation of the reaction by laser absorption has been carefully studied. A high proton mobility has been identified as the likely reason that limits the lengthening of the chain up to six to eight monomeric units preventing the polymer formation.  相似文献   
48.
Thermogravimetric studies of the sodium salt of poly(acrylic acid), its modified sodium salt and its various metal complexes were made. The thermal stabilities of the various systems decreased in the order: poly(acrylic acid) > Ni(II) > Co(II) > Zn(II) > Fe(III) > Cu(II) > polymeric sodium salt. The higher thermal stabilities of the polymer-metal complexes result from the development of stable ring structures in the polymer matrix upon coordination with metal ions. The metal-ion complexation of carboxylate ligands of linear poly(acrylic acid), optimization of the complexation conditions and infra-red and ultraviolet-visible spectrometric characterizations are also illustrated.  相似文献   
49.
Small tyrosine phoshatase 1 (Stp1) is a Schizosaccharomyces pombe low-molecular-mass phosphotyrosine-phosphatase 50% identical to Saccharomyces cerevisiae Ltp1. In order to investigate the role of Stp1 in yeast, a mutant was generated having the characteristic of a dominant negative molecule. Changes in protein tyrosine phosphorylation in S. cerevisiae proteome in response to Stp1 or its dominant negative mutant expression were analyzed by high-resolution two-dimensional (2-D) electrophoresis. The most remarkable result is the modification by phosphorylation on tyrosine of several proteins involved in carbohydrate metabolism. Twelve proteins were identified on the basis of their positions in the anti-phosphotyrosine immunoblot of the 2-D electrophoresis. Ten of these present tyrosyl residues that are within the consensus sequence for protein kinase CK2 (casein kinase-2). These data open the possibility for the identification of Stp1 substrates in yeast and provide hints about the nature of tyrosine phosphorylating agents in yeast and in other organisms where bona fide tyrosine kinases are lacking.  相似文献   
50.
A simple approach to synthesize carboxymethyl dextran‐coated MnO nanoparticles (CMDex‐MnONPs) with high colloidal stability in physiological saline solutions is described here for potential applications as a magnetic resonance imaging (MRI) T1 contrast agent. The thermal decomposition methodology is used to produce uniform MnONPs with an average size of around 20 nm, and its hydrophobic surface is modified with CMDex molecules, conferring hydrophilic properties. After CMDex coating, the nanoparticle presents high colloidal stability in concentrations ranging from 10 to 50 μg mL?1, average hydrodynamic size (Z‐average) of 130 nm, polydispersity degree of ≈12%, and negative surface charge in both simulated body fluid solutions and pure water with zeta‐potential of –20 and –40 mV, respectively. The CMDex‐MnONPs with 20 nm show antiferromagnetic behavior at room temperature, and the magnetic properties are found to be strongly dependent of the nanoparticle size, increasing the contribution of the ferromagnetic Mn3O4 phase with decreasing size for nanoparticles about 3 nm. Cytotoxicity evaluation in cancerous and noncancerous cells in the range of 5.0–50.0 μg mL?1 shows low toxicity for cancerous cells and lack of the same for healthy cells lines. Related to the magnetic properties, CMDex‐MnONP presents significant r1 relaxivity and low r2/r1 relaxivity ratio. The results suggest that these nanoparticles display characteristics for potential applications as an MRI T1 contrast agent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号