首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   498篇
  免费   5篇
化学   315篇
晶体学   4篇
力学   22篇
综合类   1篇
数学   83篇
物理学   78篇
  2022年   4篇
  2021年   6篇
  2020年   4篇
  2016年   6篇
  2014年   5篇
  2013年   21篇
  2012年   13篇
  2011年   18篇
  2010年   8篇
  2008年   23篇
  2007年   20篇
  2006年   23篇
  2005年   27篇
  2004年   14篇
  2003年   17篇
  2002年   14篇
  2001年   10篇
  1999年   6篇
  1998年   6篇
  1997年   4篇
  1996年   6篇
  1995年   7篇
  1994年   8篇
  1992年   9篇
  1991年   4篇
  1990年   5篇
  1989年   5篇
  1985年   5篇
  1984年   6篇
  1983年   7篇
  1982年   10篇
  1981年   11篇
  1980年   9篇
  1979年   9篇
  1978年   13篇
  1977年   5篇
  1976年   7篇
  1975年   8篇
  1974年   11篇
  1973年   8篇
  1972年   5篇
  1970年   4篇
  1969年   5篇
  1967年   8篇
  1966年   4篇
  1964年   4篇
  1955年   4篇
  1936年   6篇
  1931年   3篇
  1930年   3篇
排序方式: 共有503条查询结果,搜索用时 15 毫秒
101.
Recent experiments demonstrate transfer of lipid molecules between a charged, supported lipid membrane (SLB) and vesicles of opposite charge when the latter adsorb on the SLB. A simple phenomenological bead model has been developed to simulate this process. Beads were defined to be of three types, ‘n’, ‘p’, and ‘0’, representing POPS (negatively charged), POEPC (positively charged), and POPC (neutral but zwitterionic) lipids, respectively. Phenomenological bead–bead interaction potentials and lipid transfer rate constants were used to account for the overall interaction and transfer kinetics. Using different bead mixtures in both the adsorbing vesicle and in the SLB (representing differently composed/charged vesicles and SLBs as in the reported experiments), we clarify under which circumstances a vesicle adsorbs to the SLB, and whether it, after lipid transfer and changed composition of the SLB and vesicle, desorbs back to the bulk again or not. With this model we can reproduce and provide a conceptual picture for the experimental findings.  相似文献   
102.
103.
104.
The possibility of the decomposition of the three-dimensional (3D) Gross-Pitaevskii equation (GPE) into a pair of coupled Schrödinger-type equations, is investigated. It is shown that, under suitable mathematical conditions, it is possible to construct the exact controlled solutions of the 3D GPE from the solutions of a linear 2D Schrödinger equation coupled with a 1D nonlinear Schrödinger equation (the transverse and longitudinal components of the GPE, respectively). The coupling between these two equations is the functional of the transverse and the longitudinal profiles. The applied method of nonlinear decomposition, called the controlling potential method (CPM), yields the full 3D solution in the form of the product of the solutions of the transverse and longitudinal components of the GPE. It is shown that the CPM constitutes a variational principle and sets up a condition on the controlling potential well. Its physical interpretation is given in terms of the minimization of the (energy) effects introduced by the control. The method is applied to the case of a parabolic external potential to construct analytically an exact BEC state in the form of a bright soliton, for which the quantitative comparison between the external and controlling potentials is presented.  相似文献   
105.
Numerous bacterial genera are known to respire anaerobically using macroscopic electrodes as electron acceptors. Typically, inexpensive graphite electrodes, which are readily colonized, are used to monitor electrogenic bacterial metabolism for microbial fuel cell and bioelectronics studies. We compare current production by electrogenic bacteria on gold electrodes coated with various alkanethiol self-assembled monolayers to current production on glassy carbon electrodes. Current production is correlated to chain length and headgroup of the monolayer molecules as expected. Relative to graphite, the coated gold electrodes achieve more reproducible experimental conditions and certain headgroups enhance electronic coupling to the bacteria.  相似文献   
106.
Different functions for the programming of the cross flow in asymmetrical flow field-flow fractionation were studied with the aim to find the flow conditions most suitable for the molar mass distribution analysis of high molecular weight polysaccharides. A mixture of four differently sized pullulans covering the molar mass range 5.8 x 10(3)-1.6 x 10(6) g mol(-1) were used as a model sample. Two types of programs were studied, linear and exponential decays, both with and without initial periods of a constant cross flow. For comparison, nonprogrammed runs, i.e. using constant cross flow, were studied. It was found that exponentially decaying cross flow gave the most uniform molar mass selectivity across the fractogram. The programmed cross flow was applied to the molar mass distribution analysis of a technical quality of hydroxypropyl cellulose.  相似文献   
107.
Aminoacridines have a long history in the drug and dye industries and display a wide range of biological and physical properties. Despite the historical relevance of 9-aminoacridines, there have been few studies investigating their stability. 9-Aminoacridines are known to hydrolyze at the C9-N15 bond, yielding acridones. In this study, the pH-dependent hydrolysis rates of a series of 9-substituted aminoacridines are investigated. In addition, ground-state physical properties of the compounds are determined using ab initio quantum mechanics calculations to gain insight into the forces that drive hydrolysis. An analysis of the bond orders, bond dissociation energies, and conformational energies show that the rate of hydrolysis depends on two main factors: delocalization across the C9-N15 bond and steric effects. The computational results are applied to explain the change in experimental rates of hydrolysis going from primary to secondary and to tertiary substituted 9-aminoacridines. In the case of tertiary substituted amines, the calculations indicate the C9-N15 bond is forced into a more gauche-like conformation, greatly diminishing delocalization (as shown by reductions in bond orders and bond energy), which leads to rapid hydrolysis. A model of intramolecular hydrogen bonding is also presented, which explains the increased rate of hydrolysis observed for highly substituted compounds under acidic conditions.  相似文献   
108.
Twelve heteroaromatic complexing agents 9a–I were synthesized with the purpose to develop suitable labels for time-resolved luminescence-based bioaffinity assays. The relative luminescence yields, excitation maxima, and emission decay constants of their europium(III) and terbium(III) chelates were determined. According to these results, 2,2′,2″,2?-[(2,2′-bipyridine-6,6′-diyl)bis(methylenenitrilo)]tetrakis (acetic acid) ( 9e ) and 2,2′,2″,2?-[(2,2′:6′,2″-terpyridine-6,6″-diyl)bis(methylenenitrilo)] tetrakis(acetic acid) ( 91 ) are the most promising agents.  相似文献   
109.
The quenching of the luminescence of [Ru(phen)(2)dppz](2+) by structural homologue [Ru(phendione)(2)dppz](2+), when both complexes are bound to DNA, has been studied for all four combinations of Delta and Lambda enantiomers. Flow linear dichroism spectroscopy (LD) indicates similar binding geometries for all the four compounds, with the dppz ligand fully intercalated between the DNA base pairs. A difference in the LD spectrum observed for the lowest-energy MLCT transition suggests that a transition, potentially related to the final localization of the excited electron to the dppz ligand in [Ru(phen)(2)dppz](2+), is overlaid by an orthogonally polarized transition in [Ru(phendione)(2)dppz](2+). This would be consistent with a low-lying LUMO of the phendione moiety of [Ru(phendione)(2)dppz](2+) that can accept the excited electron from [Ru(phen)(2)dppz](2+), thereby quenching the emission of the latter. The lifetime of excited Delta-[Ru(phen)(2)dppz](2+) is decreased moderately, from 664 to 427 ns, when bound simultaneously with the phendione complex to DNA. The 108 ns lifetime of opposite enantiomer, Lambda-[Ru(phen)(2)dppz](2+), is only shortened to 94 ns. These results are consistent with an average rate constant for electron transfer of approximately 1.10(6) s(-1) between the phenanthroline- and phendione-ruthenium complexes. At binding ratios close to saturation of DNA, the total emission of the two enantiomers is lowered equally much, but for the Lambda enantiomer, this is not paralleled by a decrease in luminescence lifetime. A binding isotherm simulation based on a generalized McGhee-von Hippel approach shows that the Delta enantiomer binds approximately 3 times stronger to DNA both for [Ru(phendione)(2)dppz](2+) and [Ru(phen)(2)dppz](2+). This explains the similar decrease in total emission, without the parallel decrease in lifetime for the Lambda enantiomer. The simulation also does not indicate any significant binding cooperativity, in contrast to the case when Delta-[Rh(phi)(2)bipy](3+) is used as quencher. The very slow electron transfer from [Ru(phen)(2)dppz](2+) to [Ru(phendione)(2)dppz](2+), compared to the case when [Rh(phi)(2)phen](3+) is the acceptor, can be explained by a much smaller driving free-energy difference.  相似文献   
110.
The ease with which simple starting materials can be transformed into highly functionalized products has made oxidative N-heterocyclic carbene (NHC) catalysis an area of significant interest. However, the use of stoichiometric amounts of high molecular weight oxidants in most reactions generates an undesired equivalent amount of waste. To address this issue, the use of oxygen as the terminal oxidant in NHC catalysis has been developed. Oxygen is attractive due to its low cost, low molecular weight, and ability to generate water as the sole by-product. However, molecular oxygen is challenging to use as a reagent in organic synthesis due to its unreactive ground state, which often requires reactions to be run at high temperatures and results in the formation of kinetic side-products. This review covers the development of aerobic oxidative carbene catalysis, including NHC-catalyzed reactions with oxygen, strategies for oxygen activation, and selectivity issues under aerobic conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号