首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16645篇
  免费   251篇
  国内免费   28篇
化学   10598篇
晶体学   297篇
力学   534篇
综合类   1篇
数学   1207篇
物理学   4287篇
  2024年   266篇
  2023年   276篇
  2022年   480篇
  2021年   507篇
  2020年   585篇
  2019年   650篇
  2018年   545篇
  2017年   510篇
  2016年   720篇
  2015年   511篇
  2014年   796篇
  2013年   1316篇
  2012年   1169篇
  2011年   1206篇
  2010年   804篇
  2009年   623篇
  2008年   747篇
  2007年   745篇
  2006年   576篇
  2005年   509篇
  2004年   385篇
  2003年   322篇
  2002年   273篇
  2001年   161篇
  2000年   140篇
  1999年   113篇
  1998年   85篇
  1997年   111篇
  1996年   109篇
  1995年   82篇
  1994年   84篇
  1993年   107篇
  1992年   106篇
  1991年   85篇
  1990年   80篇
  1989年   89篇
  1988年   65篇
  1987年   63篇
  1986年   58篇
  1985年   76篇
  1984年   72篇
  1983年   66篇
  1982年   59篇
  1981年   46篇
  1980年   52篇
  1979年   72篇
  1978年   54篇
  1977年   60篇
  1976年   47篇
  1975年   39篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
111.
Non magnetic material Ca2+ as a substitute in Cobalt ferrite (Co1?xCaxFe2O4x?=?0.00, 0.05, 0.10 & 0.15) is prepared by self auto combustion method. The synthesized samples were carried out for various characterizations such as X-ray diffraction, Field emission scanning electron microscope (FE-SEM), Dielectric measurement and Magnetic property. X-ray diffraction reveals the values of crystalline size, lattice parameter and x-ray density by using the standard formula. The saturation magnetization (Ms) decreases from 63.92 to 43.17 emu/g for x?=?0.00 to 0.15 and the coercivity (Hc) increases gradually from 819.85 to 1312.32?Oe with the increase in Ca2+ concentration. The dielectric properties of synthesized nano materials were carried out at room temperature. The dielectric parameters such as tangent loss, Cole–Cole plot (Impedance, Modulus), and AC Conductivity were determined for various Ca2+ concentration. The frequency dependent dielectric dispersion behaviour of all the samples can be explained by the Maxwell–Wagner two-layer model along with Koop's phenomenological theory. As a result, Ca2+ substituted Cobalt ferrite is enhanced with their dielectric and magnetic property which is suitable for a memory device, recording media application and high frequency device.  相似文献   
112.
113.
114.
A strong influence of Ni content on the diffusion-controlled growth of the (Cu,Ni)3Sn and (Cu,Ni)6Sn5 phases by coupling different Cu(Ni) alloys with Sn in the solid state is reported. The continuous increase in the thickness ratio of (Cu,Ni)6Sn5 to (Cu,Ni)3Sn with the Ni content is explained by combined kinetic and thermodynamic arguments as follows: (i) The integrated interdiffusion coefficient does not change for the (Cu,Ni)3Sn phase up to 2.5 at.% Ni and decreases drastically for 5 at.% Ni. On the other hand, there is a continuous increase in the integrated interdiffusion coefficient for (Cu,Ni)6Sn5 as a function of increasing Ni content. (ii) With the increase in Ni content, driving forces for the diffusion of components increase for both components in both phases but at different rates. However, the magnitude of these changes alone is not large enough to explain the high difference in the observed growth rate of the product phases because of Ni addition. (iv) Kirkendall marker experiments indicate that the Cu6Sn5 phase grows by diffusion of both Cu and Sn in the binary case. However, when Ni is added, the growth is by diffusion of Sn only. (v) Also, the observed grain refinement in the Cu6Sn5 phase with the addition of Ni suggests that the grain boundary diffusion of Sn may have an important role in the observed changes in the growth rate.  相似文献   
115.
We have synthesized nanoparticles of Cu1.5[Cr(CN)6]⋅6.5H2O of varying size by using poly(vinylpyrrolidone) (PVP) as a protecting polymer. The particle size variation has been achieved by varying the amount of the PVP surfactant with the reactants. The prepared nanoparticles have been investigated by using X-ray diffraction, transmission electron microscopy, and direct-current magnetization techniques. The nanoparticles crystallize in a face centred cubic structure (space group: Fm3m). The approximate particle sizes for the three samples are 18, 9, and 5 nm, respectively. Non-PVP nanoparticles (18 nm) show a magnetic ordering temperature of 65 K. A decrease in the magnetic ordering temperature was observed with decreasing particle size. These nanoparticles are magnetically very soft, showing negligibly small values of the coercivity and remanent magnetization. The maximum magnetization and spontaneous magnetization values at 5 K are found to decrease with decreasing particle size. The observed magnetization behaviour of the nanoparticles has been attributed to the increasing surface spin disorder with decreasing particle size.  相似文献   
116.
Using Lie algebraic techniques and simpler expressions of the matrix elements of Majorana and Casimir operators given by us, we obtain an effective Hamiltonian operator which conveniently describes stretching vibrations of biomolecules. For a copper tetramesityl porphyrin molecule, the higher excited vibrational levels are calculated by applying the U(2) algebraic approach.  相似文献   
117.
Recently, targeted drug delivery systems (TDDS) have offered a great potential and benefits towards the anti-tumor drug delivery. In this work, we designed the TDDS using a biocompatible poly(ethylene glycol)-poly(β-amino esters) amphiphilic block copolymer (PEG-PAEs) synthesized by Michael addition polymerization for combinatorial therapy. Further, the chemotherapeutic agents’ doxorubicin (DOX) and AS1411 DNA aptamer (Apt) are encapsulated in the PEG-PAEs NPs (PDANs) for co-delivery therapeutics. PDANs have shown the monodisperse spherical shape, smooth surface with a net positive charge (average diameter—183.1 ± 27.2 nm, zeta potential—31.2 ± 6.3 mV), and good colloidal stability (critical micelle concentration of PEG-PAEs is about 6.3 μg/mL). The pH-sensitive PAEs endowed PDANs both pH-triggered drug release characteristics and enhanced endo/lysosomal escape ability, thus improving the localization and cytotoxicity of DOX. AS1411 Apt conjugated PDANs precisely targeted nucleolin and their uptake correlates to a significant activity enhancement only in tumor cells (MCF-7) but not in normal cells (MCF-10A). Thus, PDANs can be a very promising targeted drug delivery platform for effective breast cancer therapy.
Graphical abstract Scheme 1 Schematic illustration of the preparation and cellular uptake of targeted co-delivery system
  相似文献   
118.
119.
In this study, we have implemented the three methods namely extended \((G^{\prime}/G)\)-expansion, extended \((1/G^{\prime})\)-expansion and \((G^{\prime}/G,\,\,1/G)\)-expansion methods to determine exact solutions for the (2 + 1) dimensional generalized time–space fractional differential equations. We use Conformable fractional derivative and its properties in this research to convert fractional differential equations to ordinary differential equations with integer order. By using above mentioned methods, three types of traveling wave solutions are successfully obtained which have been expressed by the hyperbolic, trigonometric, and rational function solutions. The considered methods and transformation techniques are efficient and consistent for solving nonlinear time and space-fractional differential equations.  相似文献   
120.
We have measured the cross-section for the \(K_{S}^{0}\) production from beryllium target using 120 \(\hbox {GeV}/\hbox {c}\) protons beam interactions at the main injector particle production (MIPP) experiment at Fermilab. The data were collected with target having a thickness of 0.94% of the nuclear interaction length. The \(K_{S}^{0}\) inclusive differential cross-section in bins of momenta is presented covering momentum range from \(0.4\,\hbox {GeV}/\hbox {c}\) to \(30\,\hbox {GeV}/\hbox {c}\). The measured inclusive \(K_{S}^{0}\) production cross-section amounts to \(39.54\pm 1.46\delta _{\mathrm {stat}}\pm 6.97\delta _{\mathrm {syst}}\) mb and the value is compared with the prediction of FLUKA hadron production model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号