首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2038篇
  免费   48篇
化学   1119篇
晶体学   39篇
力学   72篇
数学   120篇
物理学   736篇
  2023年   12篇
  2022年   27篇
  2021年   26篇
  2020年   40篇
  2019年   35篇
  2018年   42篇
  2017年   31篇
  2016年   78篇
  2015年   42篇
  2014年   63篇
  2013年   129篇
  2012年   135篇
  2011年   133篇
  2010年   82篇
  2009年   68篇
  2008年   117篇
  2007年   100篇
  2006年   91篇
  2005年   100篇
  2004年   73篇
  2003年   47篇
  2002年   44篇
  2001年   38篇
  2000年   23篇
  1999年   18篇
  1998年   12篇
  1997年   14篇
  1996年   25篇
  1995年   31篇
  1994年   20篇
  1993年   30篇
  1992年   17篇
  1991年   19篇
  1989年   18篇
  1988年   19篇
  1987年   13篇
  1986年   17篇
  1985年   35篇
  1984年   16篇
  1983年   14篇
  1982年   27篇
  1981年   25篇
  1980年   10篇
  1979年   10篇
  1978年   10篇
  1977年   10篇
  1975年   9篇
  1974年   14篇
  1973年   10篇
  1955年   12篇
排序方式: 共有2086条查询结果,搜索用时 15 毫秒
81.
Increased Photosensitivity in HL60 Cells Expressing Wild-Type p53   总被引:4,自引:0,他引:4  
Loss of p53 function has been correlated with decreased sensitivity to chemotherapy and radiation therapy in a variety of human tumors. Comparable analysis of p53 status with sensitivity to oxidative stress induced by pho-todynamic therapy has not been reported. In the current study we examined photosensitivity in human promye-locytic leukemia HL60 cells exhibiting either wild-type p53, mutated p53 or deleted p53 expression. Experiments were performed using a purpurin, tin ethyl etiopurpurin (SnET2)-, or a porphyrin, Photofrin (PH)-based photo-sensitizer. Total SnET2 accumulation was comparable in all three cell lines. Uptake of PH was highest in cells expressing wild-type p53 but incubation conditions could be adjusted to achieve equivalent cellular PH levels during experiments that analyzed photosensitivity. Survival measurements demonstrated that HL60 cells expressing wild-type p53 were more sensitive to PH- and SnET2-mediated photosensitization, as well as to UVC irradiation, when compared to HL60 cells exhibiting deleted or mutated p53 phenotypes. A rapid apoptotic response was observed following purpurin- and porphyrin-induced photosensitization in all cell lines. Results of this study indicate that photosensitivity is increased in HL60 cells expressing wild-type p53 and that photosensitizer-medi-ated oxidative stress can induce apoptosis through a p53-independent mechanism in HL60 cells .  相似文献   
82.
The 90 kDa heat shock proteins (Hsp90) are molecular chaperones that are responsible for the folding and/or trafficking of ∼400 client proteins, many of which are directly associated with cancer progression. Consequently, inhibition of Hsp90 can exhibit similar activity as combination therapy as multiple signaling nodes can be targeted simultaneously. In fact, seventeen small-molecule inhibitors that bind the Hsp90 N-terminus entered clinical trials for the treatment of cancer, all of which exhibited pan-inhibitory activity against all four Hsp90 isoforms. Unfortunately, most demonstrated undesired effects alongside induction of the pro-survival heat shock response. As a result, isoform-selective inhibitors have been sought to overcome these detriments. Described herein is a structure-based approach to design Hsp90β-selective inhibitors along with preliminary SAR. In the end, compound 5 was shown to manifest ∼370-fold selectivity for Hsp90β versus Hsp90α, and induced the degradation of select Hsp90β-dependent clients. These data support the development of Hsp90β-selective inhibitors as a new paradigm to overcome the detriments associated with pan-inhibition of Hsp90.  相似文献   
83.
The synthesis and characterization of a new photolabile protecting group (caging group) for carboxylic acids, the 2-(dimethylamino)-5-nitrophenyl (DANP) group, is described. This compound has a major absorption band in the visible wavelength region with a maximum near 400 nm (epsilon400 = 9077 M(-1) cm(-1) at pH 7.4 and 21 degrees C). The caging group is attached through an ester linkage to the carboxyl functionality of beta-alanine, which activates the inhibitory glycine receptor in the mammalian central nervous system. Such caged compounds play an important role in transient kinetic investigations of fast cellular processes. Upon photolysis of DANP-caged beta-alanine, the caging group is released within 5 micros. Quantum yields of 0.03 and 0.002 were obtained in the UV region (308 and 360 nm) and the visible region (450 nm), respectively. Laser-pulse photolysis experiments, using 337 or 360 nm light, were performed with the caged compound equilibrated with HEK 293 cells transiently transfected with cDNA encoding the alpha1 homomeric, wild-type glycine receptor. The experiments demonstrated that neither DANP-caged beta-alanine nor its byproducts inhibit or activate the glycine receptors on the cell surface. Under physiological conditions, the DANP-caged beta-alanine is water-soluble and stable and can be used for transient kinetic measurements.  相似文献   
84.
Available online Development of water soluble AIE-active “light-up” bioprobes for the detection of biomacromolecules has drawn huge research interests in recent past. In this study, a series of ethylene glycol modified water soluble tetrameric tetraphenylethylene amphiphiles with pyridinium polar heads (TPE-xEG-Py, x = 3, 4, 6 or 1a-c) have been synthesized by varying the ethylene glycol spacer. Their unique structure allows them to form vesicles and other nanoaggregates in aqueous solutions. These amphiphiles were successfully utilized for fluorimetric detection and quantitation of BSA and DNA based on the electrostatic interactions to trigger AIE-emission from the TPE moiety. The electrostatic interaction was also proved very effective in wash-free imaging of both Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria with up to 92 folds increase in fluorescence response within bacterial concentration 0–12 × 108 CFU mL?1. The strategy is advantageous due to cost-effective and easy synthesis, high water solubility, and fast response.  相似文献   
85.
Porous solids that can be switched between different forms with distinct physical properties are appealing candidates for separation, catalysis, and host–guest chemistry. In this regard, porous organic cages (POCs) are of profound interest because of their solution‐state accessibility. However, the application of POCs is limited by poor chemical stability. Synthesis of an exceptionally stable imine‐linked (4+6) porous organic cage ( TpOMe‐CDA ) is reported using 2,4,6‐trimethoxy‐1,3,5‐triformyl benzene (TpOMe) as a precursor aldehyde. Introduction of the ‐OMe functional group to the aldehyde creates significant steric and hydrophobic characteristics in the environment around the imine bonds that protects the cage molecules from hydrolysis in the presence of acids or bases. The electronic effect of the ‐OMe group also plays an important role in enhancing the stability of the reported POCs. As a consequence, TpOMe‐CDA reveals exceptional chemical stability in neutral, acidic and basic conditions, even in 12 m NaOH. Interestingly, TpOMe‐CDA exists in three different porous and non‐porous polymorphic forms (α, β, and γ) with respect to differences in crystallographic packing and the orientation of the flexible methoxy groups. All of the polymorphs retain their crystallinity even after treatment with acids and bases. All the polymorphs of TpOMe‐CDA differ significantly in their properties as well as morphology and could be reversibly switched in the presence of an external stimulus.  相似文献   
86.
The advent of nano-biotechnology has inspired the interface interaction study between engineered nanoparticles (NPs) and biomolecules. The interaction between Fe content titanium dioxide (TiO2) NPs and adenosine triphosphate (ATP) biomolecules has been envisioned. The effect of Fe content in TiO2 matrix was studied using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The increase in Fe content caused a decrease in particle size with change in morphology from spherical to one-dimensional rod structure. The Fe incorporation in the TiO2 matrix reduced the transition temperature from anatase to rutile (A-R) phase along with formation of haematite phase of iron oxide at 400°C. The interaction of Fe content TiO2 NPs with ATP molecule has been studied using spectroscopic method of Raman scattering and infrared vibration spectrum along with TEM. Fe content in TiO2 has enhanced the interaction efficiency of the NPs with ATP biomolecules. Raman spectroscopy confirms that the NPs interact strongly with nitrogen (N7) site in the adenine ring of ATP biomolecule. Engineering of Fe content TiO2 NP could successfully tune the coordination between metal oxide NPs with biomolecules, which could help in designing devices for biomedical applications.  相似文献   
87.
Sulfonated polytriazoles have drawn a great attention as high performance polymers and their good film forming ability. In the present study, a phosphorus containing new diazide monomer namely, bis-[4-(4′-aminophenoxy)phenyl]phenylphosphine was synthesized and accordingly, a series of phosphorus containing sulfonated polytriazoles (PTPBSH-XX) was synthesized by reacting equimolar amount of this diazide monomer (PAZ) in combination with another sulfonated diazide monomer (DSAZ) and a terminal bis-alkyne (BPALK) by the Cu (I) catalyzed azide–alkyne click polymerization. The polymers were characterized by nuclear magnetic resonance (1H, 13C, 31P NMR) and Fourier transform infrared spectroscopic techniques. The sulfonic acid content of the copolymers also determined from the different integral values obtained from the 1H NMR signals. The small-angle X-ray scattering results unfolded the well-separated dispersion of the hydrophilic and hydrophobic domains of the polymers. As a whole, the copolymer membranes displayed sufficient thermal, mechanical, and oxidative stabilities high with high proton conductivity and low water uptake that are essential for proton exchange membrane applications. The copolymers exhibited oxidative stability in the range of 15–24 h and had proton conductivity values were found as high as 38–110 mS cm−1 at 80 °C in completely hydrated condition. Among the all copolytriazoles, PTPBSH-90 (BPALK:DSAZ:PAZ = 100:90:10) having IECW = 2.44 mequiv g−1, showed proton conductivity as high as 119 mS cm−1 at 90 °C with an activation energy of 10.40 kJ mol−1 for the proton conduction. © 2020 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 263–279  相似文献   
88.
A convenient and inexpensive one step methodology has been developed for the synthesis of linear and angular fused quinazolinones. The protocol, which uses amino heterocycles and o-bromo benzyl/naphthyl bromides as reactants, CuI as catalyst, Cs2CO3 as base, l-proline as ligand, and DMF as solvent, proceeds via nucleophilic aromatic substitution of the N-heteroaromatic cationic intermediate followed by in situ aerial oxidation at the benzylic position to the quinazolinone scaffold.  相似文献   
89.
Arjunan P  Kumar A  Chaudhuri M  Banerjee G 《Talanta》1995,42(8):1089-1093
The study describes a new wet chemical technique, termed ANM, for the isolation of secondary phases in magnesite processed at a temperature of 1650 degrees C. The major MgO (periclase) phase in processed magnesite was preferentially extracted as ammonium nitrate magnesium double salt by ammonium nitrate in ethanol medium. The residues containing enriched secondary phases were identified by XRD.  相似文献   
90.
A sonochemical method was employed to prepare reactive nanoparticles of FeSbO(4) at 300 °C, which is the lowest calcination temperature reported so far for preparing FeSbO(4). A systematic evolution of the FeSbO(4) phase formation as a function of temperature was monitored by in situ synchrotron X-ray measurements. The 300 and 450 °C calcined powders exhibited specific surface areas of 116 and 75 m(2)/g, respectively. The X-ray photoelectron spectra analysis confirmed the presence of mainly Fe(3+) and Sb(5+) in the calcined powder. The response of the fabricated sensors (using both 300 and 450 °C calcined powders) toward 1000 ppm and 1, 2, 4, and 8% hydrogen, respectively, has been monitored at various operating temperatures. The sensors fabricated using 300 °C calcined powder exhibited a response of 76% toward 4% H(2) gas at an operating temperature of 300 °C, while those fabricated using 450 °C calcined powder exhibited a higher response of 91% with a quick recovery toward 4% H(2) gas at 300 °C. The results confirmed that a higher calcination temperature was preferred to achieve better sensitivity and selectivity toward hydrogen in comparison to other reducing gases such as butane and methane. The experimental results confirmed that the sonochemical process can be easily used to prepare FeSbO(4) nanoparticles for various catalytic applications as demonstrated. Here, we project FeSbO(4) as a new class of material exhibiting high sensitivity toward a wide range of hydrogen gas. Such sensors that could detect high concentrations of hydrogen may find application in nuclear reactors where there will be a leakage of hydrogen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号