首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   349篇
  免费   17篇
  国内免费   1篇
化学   272篇
晶体学   1篇
力学   17篇
数学   23篇
物理学   54篇
  2023年   4篇
  2022年   6篇
  2021年   9篇
  2020年   5篇
  2019年   7篇
  2018年   16篇
  2017年   6篇
  2016年   16篇
  2015年   12篇
  2014年   13篇
  2013年   30篇
  2012年   42篇
  2011年   34篇
  2010年   22篇
  2009年   15篇
  2008年   14篇
  2007年   17篇
  2006年   19篇
  2005年   15篇
  2004年   18篇
  2003年   15篇
  2002年   11篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1996年   3篇
  1994年   1篇
  1990年   1篇
  1987年   1篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有367条查询结果,搜索用时 156 毫秒
241.
Gallium hydrazides are potentially applicable as facile starting compounds for the generation of GaN by thermolysis. The decomposition pathways are, however, complicated and depend strongly on the substituents attached to the gallium atoms and the hydrazido groups. This paper describes some systematic investigations into the thermolysis of the gallium hydrazine adduct Bu(t)(3)Ga←NH(2)-NHMe (1a) and the dimeric gallium hydrazides [R(2)Ga(N(2)H(2)R')](2) (2b, R = Bu(t), R' = Bu(t); 2c, R = Pr(i), R' = Ph; 2d, R = Me, R' = Bu(t)) which have four- or five-membered heterocycles in their molecular cores. Heating of the adduct 1a to 170 °C gave the heterocyclic compound Bu(t)(2)Ga(μ-NH(2))[μ-N(Me)-N(=CH(2))]GaBu(t)(2) (3) by cleavage of N-N bonds and rearrangement. 3 was further converted at 400 °C into the tetrameric gallium cyanide (Bu(t)(2)GaCN)(4) (4). The thermolysis of the hydrazide (Bu(t)(2)Ga)(2)(NH-NHBu(t))(2) (2b) at temperatures between 270 and 420 °C resulted in cleavage of all N-N bonds and the formation of an octanuclear gallium imide, (Bu(t)GaNH)(8) (6). The trimeric dialkylgallium amide (Bu(t)(2)GaNH(2))(3) (5) was isolated as an intermediate. Thermolysis of the hydrazides (Pr(i)(2)Ga)(2)(NH-NHPh)(NH(2)-NPh) (2c) and (Me(2)Ga)(2)(NH-NHBu(t))(2) (2d) proceeded in contrast with retention of the N-N bonds and afforded a variety of novel gallium hydrazido cage compounds with four gallium atoms and up to four hydrazido groups in a single molecule: (Pr(i)Ga)(4)(NH-NPh)(3)NH (7), (MeGa)(4)(NH-NBu(t))(4) (8), (MeGa)(4)(NH-NBu(t))(3)NBu(t) (9), and (MeGa)(4)(NHNBu(t))(3)NH (10). Partial hydrolysis gave reproducibly the unique octanuclear mixed hydrazido oxo compound (MeGa)(8)(NHNBu(t))(4)O(4) (11).  相似文献   
242.
Tungstate ions supported on the periodic mesoporous organosilica with ionic liquid frameworks (WO4=@PMO-IL) were found to be a recoverable catalyst system for the highly selective oxidation of various primary or secondary alcohols to the corresponding aldehydes or ketones by 30% H2O2 as green oxidant under neutral aqueous reaction conditions. The catalyst can be also recovered and efficiently reused in seven subsequent reaction cycles without any remarkable decreasing in the catalyst activity and selectivity. Moreover, N2 sorption analysis, transmission electron microscopy (TEM) images, and thermal gravimetric analysis (TGA) showed that the structure regularity and functional groups loaded of the catalyst were not affected during the reaction process.  相似文献   
243.
244.
245.
Periodic mesoporous organosilica based on alkylimidazolium ionic liquid (PMO-IL) was prepared and used as a highly porous fiber coating material for solid-phase microextraction (SPME). The prepared nanomaterial was immobilized onto a stainless steel wire for fabrication of the SPME fiber. The fiber was evaluated for the extraction of some polycyclic aromatic hydrocarbons (PAHs) from aqueous sample solutions in combination with gas chromatography–mass spectrometry (GC–MS). A one at-the-time optimization strategy was applied for optimizing the important extraction parameters such as extraction temperature, extraction time, ionic strength, stirring rate, and desorption temperature and time. In optimum conditions, the repeatability for one fiber (n = 3), expressed as relative standard deviation (R.S.D.%), was between 4.3% and 9.7% for the test compounds. The detection limits for the studied compounds were between 4 and 9 pg mL−1. The developed method offers the advantage of being simple to use, with shorter analysis time, lower cost of equipment, thermal stability of fiber and high relative recovery in comparison to conventional methods of analysis.  相似文献   
246.
This review deals with the preparation, stability, rheology and different applications of highly concentrated emulsions. These emulsions, which are known as high internal phase ratio emulsions (HIPRE), gel-emulsions, biliquid foams, etc., containing over 90% internal phase by volume, have a swollen micellar (L1 or L2) solution of nonionic or ionic surfactants as a continuous phase. These emulsions have the structure of biliquid foams and behave as gels since they present viscoelastic and plastic properties. The functional macroscopic properties of gel-emulsions are dependent on the structural parameters of the microemulsion continuous phase as well as of the interfacial properties (interfacial tension, bending modules, spontaneous curvature) of surfactant monolayers. The depletion interaction between emulsion droplets due to the non-compensated osmotic pressure of micelles is revealed as a main factor, along with surface forces, which determine the aggregative stability and the rheological properties of these emulsions. The effect of electrolyte and surfactant concentration, temperature, as well as other physicochemical parameters on the fiocculation threshold, stability, and yielding properties of highly concentrated emulsions is explained by the effect of these parameters on the critical micelle concentration (CMC) and the aggregation number of surfactants, and, consequently, on the depletion interaction. The thermodynamic theory of adhesion of fluid droplets in micellar solution and the suggested model of elasticity of gel-emulsions permit to explain the effect of mentioned physicochemical parameters on the elasticity modulus, the plastic strength and the linear deformation of these emulsions. A novel mechanism for the spontaneous formation of gel-emulsions by the phase inversion temperature (PIT) route is suggested, allows the selection of ternary systems able to yield these emulsions, and explains how the droplet size can be controlled during the PIT process. An original model for liquid film rupture is also suggested, and allows the prediction of the effect of structural parameters of micellar solutions and the interfacial properties of surfactant monolayers on the stability of gel-emulsions.  相似文献   
247.
ABSTRACT

The effect of polymer volume concentration C, pH and ionic strength (NaCl concentration, CNal) of solution, polymer molecular mass, acetate groups' content in a polymer chain, and ethanol concentration on the stability of microscopic emulsion films (MEF) stabilized with the adsorption layers of poly(acrylic acid) (PAA) and acrylic acid-vinylacetate copolymers (PAA-VA) has been studied.

The kinetics of MEF thinning under the conditions when two heptane drops in a polymer solution are brought into contact and pressed with a permanent force has been studied.

The free energy ? F of interaction in the film has been evaluated on the basis of measuring the film thickness Hf by photometry and determining the film profile in the Plateau region.  相似文献   
248.
The main objective of the present study is to investigate the effect of diameter on thermal properties of phase change fibers at nanoscale in order to develop a shape-stabilized phase change material (PCM). In this regard, polyethylene glycol/cellulose acetate (PEG/CA) electrospun nanofibers as a model of PCM/polymer structure were electrospun. The electrospinning process was optimized using response surface methodology (RSM) to produce phase change nanofibers (PCNs) with achievable minimum and maximum diameter at nanoscale range. Therefore, PCNs with minimum and maximum diameter (223 nm and 545 nm, respectively) were successfully prepared. According to differential scanning calorimetry (DSC) results, the PCNs sample with maximum diameter exhibited higher efficiency of enthalpy (49.41 %) than the PCNs sample with minimum diameter (46.24 %). On the other hand, a test based on the T-history method revealed that PCNs with maximum diameter enjoy higher thermal insulation effect. Scanning electron microscopy (SEM) as well as DSC results showed that the PCNs samples exposed to thermal cycling test not only preserved their structural durability, but also exhibited about twofold increasing in the efficiency of enthalpy than the non-exposed samples. According to thermogravimetric analysis (TG) results, due to successful entrapping, a fraction of PCMs within the structure of polymer matrix, PCNs sample display greater thermal stability comparing to the pure PCM. The present work emphasises that at nanoscale range, higher diameter of PCNs can present more favorable thermal behavior; suggesting a great potential for advanced applications of thermal energy storage and thermal regulating materials fields.  相似文献   
249.
Chemical transformations of 3-oxolup-20(29)-en-28-al in oxidation, reduction, reductive amination, aldol crotonic condensation, cyclopropanation, Grignard, and Wittig reactions were investigated. The structure of reaction products was established by X-ray diffraction (XRD) analysis.  相似文献   
250.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号