排序方式: 共有73条查询结果,搜索用时 15 毫秒
41.
Heteropentanuclear Oxalato‐Bridged nd–4f (n=4, 5) Metal Complexes with NO Ligand: Synthesis,Crystal Structures,Aqueous Stability and Antiproliferative Activity 下载免费PDF全文
Dr. Paul‐Steffen Kuhn B. Sc. Laura Cremer Dr. Anatolie Gavriluta Dr. Katarina K. Jovanović Dr. Lana Filipović Dr. Alfred A. Hummer Dr. Gabriel E. Büchel Dr. Biljana P. Dojčinović Dr. Samuel M. Meier Prof. Dr. Annette Rompel Dr. Siniša Radulović Dr. Jean Bernard Tommasino Dr. Dominique Luneau Prof. Dr. Vladimir B. Arion 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(39):13703-13713
A series of heteropentanuclear oxalate‐bridged Ru(NO)‐Ln (4d–4f) metal complexes of the general formula (nBu4N)5[Ln{RuCl3(μ‐ox)(NO)}4], where Ln=Y ( 2 ), Gd ( 3 ), Tb ( 4 ), Dy ( 5 ) and ox=oxalate anion, were obtained by treatment of (nBu4N)2[RuCl3(ox)(NO)] ( 1 ) with the respective lanthanide salt in 4:1 molar ratio. The compounds were characterized by elemental analysis, IR spectroscopy, electrospray ionization (ESI) mass spectrometry, while 1 , 2 , and 5 were in addition analyzed by X‐ray crystallography, 1 by Ru K‐edge XAS and 1 and 2 by 13C NMR spectroscopy. X‐ray diffraction showed that in 2 and 5 four complex anions [RuCl3(ox)(NO)]2? are coordinated to YIII and DyIII, respectively, with formation of [Ln{RuCl3(μ‐ox)(NO)}4]5? (Ln=Y, Dy). While YIII is eight‐coordinate in 2 , DyIII is nine‐coordinate in 5 , with an additional coordination of an EtOH molecule. The negative charge is counterbalanced by five nBu4N+ ions present in the crystal structure. The stability of complexes 2 and 5 in aqueous medium was monitored by UV/Vis spectroscopy. The antiproliferative activity of ruthenium‐lanthanide complexes 2 – 5 were assayed in two human cancer cell lines (HeLa and A549) and in a noncancerous cell line (MRC‐5) and compared with those obtained for the previously reported Os(NO)‐Ln (5d–4f) analogues (nBu4N)5[Ln{OsCl3(ox)(NO)}4] (Ln=Y ( 6 ), Gd ( 7 ), Tb ( 8 ), Dy ( 9 )). Complexes 2 – 5 were found to be slightly more active than 1 in inhibiting the proliferation of HeLa and A549 cells, and significantly more cytotoxic than 5d–4f metal complexes 6 – 9 in terms of IC50 values. The highest antiproliferative activity with IC50 values of 20.0 and 22.4 μM was found for 4 in HeLa and A549 cell lines, respectively. These cytotoxicity results are in accord with the presented ICP‐MS data, indicating five‐ to eightfold greater accumulation of ruthenium versus osmium in human A549 cancer cells. 相似文献
42.
Cebrián-Losantos B Krokhin AA Stepanenko IN Eichinger R Jakupec MA Arion VB Keppler BK 《Inorganic chemistry》2007,46(12):5023-5033
The osmium(III) complex [(DMSO)2H][trans-OsIIICl4(DMSO)2] (1) has been prepared via stepwise reduction of OsO4 in concentrated HCl using N2H(4).2HCl and SnCl(2).2H2O in DMSO. 1 reacts with a number of azole ligands, namely, indazole (Hind), pyrazole (Hpz), benzimidazole (Hbzim), imidazole (Him), and 1H-1,2,4-triazole (Htrz), in organic solvents, affording novel complexes (H2ind)[OsIIICl4(Hind)(DMSO)] (2), (H2pz)[OsIIICl4(Hpz)(DMSO)] (3), (H2bzim)[OsIIICl4(Hbzim)(DMSO)] (4), (H2im)[OsIIICl4(Him)(DMSO)] (6), and (H2trz)[OsIIICl4(Htrz)(DMSO)] (7), which are close analogues of the antimetastatic complex NAMI-A. Metathesis reaction of 4 with benzyltriphenylphosphonium chloride in methanol led to the formation of (Ph3PCH2Ph)[OsIIICl4(Hbzim)(DMSO)] (5). The complexes were characterized by IR, UV-vis, ESI mass spectrometry, 1H NMR spectroscopy, cyclic voltammetry, and X-ray crystallography. In contrast to NAMI-A, 2-4, 6, and 7 are kinetically stable in aqueous solution and resistant to hydrolysis. Surprisingly, they show reasonable antiproliferative activity in vitro in two human cell lines, HT-29 (colon carcinoma) and SK-BR-3 (mammary carcinoma), when compared with analogous ruthenium compounds. Structure-activity relationships and the potential of the prepared complexes for further development are discussed. 相似文献
43.
Orsolya Dmtr Nra V. May G. Tams Gl Gabriella Spengler Aliona Dobrova Vladimir B. Arion va A. Enyedy 《Molecules (Basel, Switzerland)》2022,27(7)
The proton dissociation processes of two tridentate salicylidene aminoguanidine Schiff bases (SISC, Pro-SISC-Me), the solution stability and electrochemical properties of their Cu(II), Fe(II) and Fe(III) complexes were characterized using pH-potentiometry, cyclic voltammetry and UV-visible, 1H NMR and electron paramagnetic resonance spectroscopic methods. The structure of the proline derivative (Pro-SISC-Me) was determined by X-ray crystallography. The conjugation of L-proline to the simplest salicylidene aminoguanidine Schiff base (SISC) increased the water solubility due to its zwitterionic structure in a wide pH range. The formation of mono complexes with both ligands was found in the case of Cu(II) and Fe(II), while bis complexes were also formed with Fe(III). In the complexes these tridentate ligands coordinate via the phenolato O, azomethine N and the amidine N, except the complex [Fe(III)L2]+ of Pro-SISC-Me in which the (O,N) donor atoms of the proline moiety are coordinated beside the phenolato O, confirmed by single crystal X-ray crystallographic analysis. This binding mode yielded a stronger Fe(III) preference for Pro-SISC-Me over Fe(II) in comparison to SISC. This finding is also reflected in the lower redox potential value of the iron-Pro-SISC-Me complexes. The ligands alone were not cytotoxic against human colon cancer cell lines, while complexation of SISC with Cu(II) resulted in moderate activity, unlike the case of its more hydrophilic counterpart. 相似文献
44.
Reisner E Arion VB Guedes da Silva MF Lichtenecker R Eichinger A Keppler BK Kukushkin VY Pombeiro AJ 《Inorganic chemistry》2004,43(22):7083-7093
The electrochemical behavior of [trans-RuCl(4)L(DMSO)](-) (A) and [trans-RuCl(4)L(2)](-) (B) [L = imidazole (Him), 1,2,4-triazole (Htrz), and indazole (Hind)] complexes has been studied in DMF, DMSO, and aqueous media by cyclic voltammetry and controlled potential electrolysis. They exhibit one single-electron Ru(III)/Ru(II) reduction involving, at a sufficiently long time scale, metal dechlorination on solvolysis, as well as, in organic media, one single-electron reversible Ru(III)/Ru(IV) oxidation. The redox potential values are interpreted on the basis of the Lever's parametrization method, and particular forms of this linear expression (that relates the redox potential with the ligand E(L) parameter) are proposed, for the first time, for negatively (1-) charged complexes with the Ru(III/II) redox couple center in aqueous phosphate buffer (pH 7) medium and for complexes with the Ru(III/IV) couple in organic media. The E(L) parameter was estimated for indazole showing that this ligand behaves as a weaker net electron donor than imidazole or triazole. The kinetics of the reductively induced stepwise replacement of chloride by DMF were studied by digital simulation of the cyclic voltammograms, and the obtained rate constants were shown to increase with the net electron donor character (decrease of E(L)) of the neutral ligands (DMSO < indazole < triazole < imidazole) and with the basicity of the ligated azole, factors that destabilize the Ru(II) relative to the Ru(III) form of the complexes. The synthesis and characterization of some novel complexes of the A and B series are also reported, including the X-ray structural analyses of (Ph(3)PCH(2)Ph)[trans-RuCl(4)(Htrz)(DMSO)], [(Ph(3)P)(2)N][trans-RuCl(4)(Htrz)(DMSO)], (H(2)ind)[trans-RuCl(4)(Hind)(DMSO)], and [(Hind)(2)H][trans-RuCl(4)(Hind)(2)]. 相似文献
45.
Su KJ Mieusset JL Arion VB Knoll W Brecker L Brinker UH 《The Journal of organic chemistry》2010,75(21):7494-7497
Tetravinylbenzene 4 was prepared in nearly quantitative yield from commercially available tetrabromobenzene; the improved, one-step procedure now employs Suzuki-Miyaura cross-coupling conditions. Intermolecular cyclopropanation of 4 with dibromocarbene gave a series of gem-dibromide adducts. Intramolecular cyclopropanation of monoadduct 5, putatively by its methyllithium-generated cyclopropylidene(oid), produced compound 11, which features a highly distorted spiropentane having a C-C-C bond angle of 163.5°. The stability of the reported spiropentanes was investigated using DFT calculations. 相似文献
46.
Hanif M Nazarov AA Legin A Groessl M Arion VB Jakupec MA Tsybin YO Dyson PJ Keppler BK Hartinger CG 《Chemical communications (Cambridge, England)》2012,48(10):1475-1477
Ru(II)(arene) anticancer compounds with maleimide functionality were prepared to allow selective interaction with thiol-containing biomolecules and thereby enforcing the selective delivery of the compounds to the tumour. 相似文献
47.
VB Arion A Dobrov S Göschl MA Jakupec BK Keppler P Rapta 《Chemical communications (Cambridge, England)》2012,48(68):8559-8561
A modified paullone ligand bearing a TEMPO free-radical unit (HL) and its ruthenium(ii) and osmium(ii)-arene complexes [M(p-cymene)(HL)Cl]Cl·nH(2)O (M = Ru, Os) exhibit high antiproliferative activity in human cancer cell lines. 相似文献
48.
Dr. Samuel M. Meier Maria Novak Dr. Wolfgang Kandioller Dr. Michael A. Jakupec Prof. Dr. Vladimir B. Arion Prof. Dr. Nils Metzler‐Nolte Prof. Dr. Bernhard K. Keppler Prof. Dr. Christian G. Hartinger 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(28):9297-9307
Organometallic Ru(arene)–peptide bioconjugates with potent in vitro anticancer activity are rare. We have prepared a conjugate of a Ru(arene) complex with the neuropeptide [Leu5]‐enkephalin. [Chlorido(η6‐p‐cymene)(5‐oxo‐κO‐2‐{(4‐[(N‐tyrosinyl‐glycinyl‐glycinyl‐phenylalanyl‐leucinyl‐NH2)propanamido]‐1H‐1,2,3‐triazol‐1‐yl)methyl}‐4H‐pyronato‐κO)ruthenium(II)] ( 8 ) shows antiproliferative activity in human ovarian carcinoma cells with an IC50 value as low as 13 μM , whereas the peptide or the Ru moiety alone are hardly cytotoxic. The conjugation strategy for linking the Ru(cym) (cym=η6‐p‐cymene) moiety to the peptide involved N‐terminal modification of an alkyne‐[Leu5]‐enkephalin with a 2‐(azidomethyl)‐5‐hydroxy‐4H‐pyran‐4‐one linker, using CuI‐catalyzed alkyne–azide cycloaddition (CuAAC), and subsequent metallation with the Ru(cym) moiety. The ruthenium‐bioconjugate was characterized by high resolution top‐down electrospray ionization mass spectrometry (ESI‐MS) with regard to peptide sequence, linker modification and metallation site. Notably, complete sequence coverage was obtained and the Ru(cym) moiety was confirmed to be coordinated to the pyronato linker. The ruthenium‐bioconjugate was analyzed with respect to cytotoxicity‐determining constituents, and through the bioconjugate models [{2‐(azidomethyl)‐5‐oxo‐κO‐4H‐pyronato‐κO}chloride (η6‐p‐cymene)ruthenium(II)] ( 5 ) and [chlorido(η6‐p‐cymene){5‐oxo‐κO‐2‐([(4‐(phenoxymethyl)‐1H‐1,2,3‐triazol‐1‐yl]methyl)‐4H‐pyronato‐κO}ruthenium(II)] ( 6 ) the Ru(cym) fragment with a triazole‐carrying pyronato ligand was identified as the minimal unit required to achieve in vitro anticancer activity. 相似文献
49.