首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2101篇
  免费   48篇
  国内免费   1篇
化学   1134篇
晶体学   39篇
力学   73篇
数学   140篇
物理学   764篇
  2023年   14篇
  2022年   27篇
  2021年   26篇
  2020年   40篇
  2019年   36篇
  2018年   46篇
  2017年   35篇
  2016年   83篇
  2015年   45篇
  2014年   65篇
  2013年   135篇
  2012年   139篇
  2011年   136篇
  2010年   84篇
  2009年   72篇
  2008年   118篇
  2007年   102篇
  2006年   95篇
  2005年   103篇
  2004年   76篇
  2003年   48篇
  2002年   45篇
  2001年   39篇
  2000年   24篇
  1999年   18篇
  1998年   12篇
  1997年   14篇
  1996年   26篇
  1995年   31篇
  1994年   21篇
  1993年   30篇
  1992年   18篇
  1991年   19篇
  1989年   19篇
  1988年   20篇
  1987年   13篇
  1986年   17篇
  1985年   36篇
  1984年   17篇
  1983年   14篇
  1982年   27篇
  1981年   25篇
  1980年   10篇
  1979年   10篇
  1978年   10篇
  1977年   10篇
  1975年   9篇
  1974年   14篇
  1973年   10篇
  1955年   12篇
排序方式: 共有2150条查询结果,搜索用时 0 毫秒
101.
A sonochemical method was employed to prepare reactive nanoparticles of FeSbO(4) at 300 °C, which is the lowest calcination temperature reported so far for preparing FeSbO(4). A systematic evolution of the FeSbO(4) phase formation as a function of temperature was monitored by in situ synchrotron X-ray measurements. The 300 and 450 °C calcined powders exhibited specific surface areas of 116 and 75 m(2)/g, respectively. The X-ray photoelectron spectra analysis confirmed the presence of mainly Fe(3+) and Sb(5+) in the calcined powder. The response of the fabricated sensors (using both 300 and 450 °C calcined powders) toward 1000 ppm and 1, 2, 4, and 8% hydrogen, respectively, has been monitored at various operating temperatures. The sensors fabricated using 300 °C calcined powder exhibited a response of 76% toward 4% H(2) gas at an operating temperature of 300 °C, while those fabricated using 450 °C calcined powder exhibited a higher response of 91% with a quick recovery toward 4% H(2) gas at 300 °C. The results confirmed that a higher calcination temperature was preferred to achieve better sensitivity and selectivity toward hydrogen in comparison to other reducing gases such as butane and methane. The experimental results confirmed that the sonochemical process can be easily used to prepare FeSbO(4) nanoparticles for various catalytic applications as demonstrated. Here, we project FeSbO(4) as a new class of material exhibiting high sensitivity toward a wide range of hydrogen gas. Such sensors that could detect high concentrations of hydrogen may find application in nuclear reactors where there will be a leakage of hydrogen.  相似文献   
102.
The synthesis, structure, and gas adsorption properties of three new metal-organic frameworks (MOFs) designed from isonicotinic acid (INA) and its fluorinated analogue 3-fluoroisonicotinic acid (FINA) along with Co(II) as the metal center have been reported. Co-INA-1 ([Co(3)(INA)(4)(O)(C(2)H(5)OH)(3)][NO(3)]·C(2)H(5)OH·3H(2)O; INA=isonicotinic acid) and Co-INA-2 ([Co(INA)(2)]·DMF) are structural isomers as are Co-FINA-1 ([Co(3-)(FINA)(4)(O)(C(2) H(5) OH)(2)]·H(2)O; FINA=3-fluoroisonicotinic acid) and Co-FINA-2 ([Co(FINA)(2)]·H(2)O), but the most important thing to note here is that Co-INA-1 and Co-FINA-1 are isostructural as are Co-INA-2 and Co-FINA-2. The effect of partial introduction of fluorine atoms into the framework on the gas uptake properties of MOFs having similar structures has been analyzed experimentally and computationally in isostructural MOFs.  相似文献   
103.
A highly sensitive, selective and rapid liquid chromatography–electrospray ionization mass spectrometry (LC‐MS) method has been developed and validated for simultaneous determination of moxifloxacin (MFX) and ketorolac (KTC) in rat plasma. Gemifloxacin (GFX) was used as an internal standard (IS). A simple protein precipitation method was used for the extraction of analytes from rat plasma. Effective chromatographic separation of MFX, KTC and GFX was achieved on a Kromasil C18 column (100 × 4.6 mm, 5 µm) using a mobile phase consisting of acetonitrile–10 mm ammonium acetate (pH 2.5)–0.1% formic acid (50:25:25) in an isocratic elution, followed by detection with positive ion electrospray ionization mass spectrometry using target ions of [M + H]+ at m/z 402 for MFX, m/z 256 for KTC and m/z 390 for GFX in selective ion recording mode. The method was validated over the calibration range of 5–100 ng/mL for MFX and 10–6000 ng/mL for KTC. The method demonstrated good performances in terms of intra‐ and inter‐day precision (0.97–5.33%) and accuracy (93.91–101.58%) for both MFX and KTC, including lower and upper limits of quantification. The recoveries from spiked control samples were >75% for MFX and >79% for KTC. The matrix effect was found to be negligible and the stability data were within acceptable limits. Further, the method was also successfully applied to a single‐dose pharmacokinetic study in rats. This method can be extended to measure plasma concentrations of both drugs in human to understand drug interaction and adverse effects. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
104.
Two self-assembled isostructural functionalized metal-organic nanotubes have been synthesized using 5-triazole isophthalic acid (5-TIA) with In(III) and Cd(II). In- and Cd-5TIA possess one-dimensional (1D) nanotubular architecture and show proton conductivity along regular 1D channels, measured as 5.35 × 10(-5) and 3.61 × 10(-3) S cm(-1) respectively.  相似文献   
105.
Interaction of potassium antimony(iii) tartrate hydrate K(2)(SbC(4)H(2)O(6))(2)·3H(2)O with the trilacunary Keggin derivatives [A-α-XW(9)O(34)](10-) (X = Si(IV), Ge(IV)) and [A-α-PW(9)O(34)](9-) in aqueous acidic medium (pH 4.8) resulted in three novel polyanions, [Sb(3)(A-α-XW(9)O(34))(2)](11-) (X = Si(IV) (1), Ge(IV) (2)) and [Sb(6)O(2)(A-PW(6)O(26))(A-α-PW(9)O(34))(2)](15-) (3), which were isolated as the hydrated potassium salts K(11)[Sb(3)(A-α-XW(9)O(34))(2)]·31H(2)O (X = Si(IV) (K-1), Ge(IV) (K-2)) and the mixed potassium-sodium salt K(14)Na[Sb(6)O(2)(A-PW(6)O(26))(A-α-PW(9)O(34))(2)]·61H(2)O (KNa-3) salts, respectively, and characterized by single-crystal X-ray diffraction, IR spectroscopy, as well as elemental and thermogravimetric analyses. The Sb(III)-containing polyanions 1-3 possess unique structural features, as they represent the first examples of sandwich-type POMs with trigonal-pyramidal Sb(III)O(3) linkers. The stability of 1-3 in aqueous media was investigated by multinuclear ((183)W, (31)P) NMR and UV-Vis spectroscopy.  相似文献   
106.
An amino‐acid‐based (11‐(4‐(pyrene‐1‐yl)butanamido)undecanoic acid) self‐repairing hydrogel is reported. The native hydrogel, as well as hybrid hydrogels, have been thoroughly characterized by using various microscopic techniques, including transmission electron microscopy (TEM), atomic force microscopy (AFM), Raman spectroscopy, fluorescence spectroscopy, FTIR spectroscopy, X‐ray diffraction, and by using rheological experiments. The native hydrogel exhibited interesting fluorescence properties, as well as a self‐healing property. Interestingly, the self‐healing, thixotropy, and stiffness of the native hydrogel can be successfully modulated by incorporating carbon‐based nanomaterials, including graphene, pristine single‐walled carbon nanotubes (Pr‐SWCNTs), and both graphene and Pr‐SWCNTs, within the native gel system. The self‐recovery time of the gel was shortened by the inclusion of reduced graphene oxide (RGO), Pr‐SWCNTs, or both RGO and Pr‐SWCNTs. Moreover, hybrid gels that contained RGO and/or Pr‐SWCNTs exhibited interesting semiconducting behavior.  相似文献   
107.
The [FeIV(O)(Me3NTB)]2+ (Me3NTB=tris[(1-methyl-benzimidazol-2-yl)methyl]amine) complex 1 has been shown by Mössbauer spectroscopy to have an S=1 ground state at 4 K, but is proposed to become an S=2 trigonal-bipyramidal species at higher temperatures based on a DFT model to rationalize its very high C−H bond-cleavage reactivity. In this work, 1H NMR spectroscopy was used to determine that 1 does not have C3-symmetry in solution and is not an S=2 species. Our results show that 1 is unique among nonheme FeIV=O complexes in retaining its S=1 spin state and high reactivity at 193 K, providing evidence that S=1 FeIV=O complexes can be as reactive as their S=2 counterparts. This result emphasizes the need to identify factors besides the ground spin state of the FeIV=O center to rationalize nonheme oxoiron(IV) reactivity.  相似文献   
108.
This review narrates the electron transfer reactions of various nickel(III) and nickel(IV) complexes reported during the period 1981 until today. The reactions have been categorized mainly with respect to the type of nickel complexes. The reactivity of nickel(III) complexes of macrocycles, 2,2′-bipyridyl and 1,10-phenanthroline, peptides and oxime–imine, and of nickel(IV) complexes derived from oxime–imine, oxime and miscellaneous ligands with various organic and inorganic electron donors have been included. Kinetic and mechanistic features associated with such interactions have been duly analyzed. The relevance of Marcus cross-relation equations in the delineation of the electron transfer paths has also been critically discussed.  相似文献   
109.

From this study it was evident that outer peristaltic parts of waste tire granules gave the highest removal. Film and pore diffusions are the major factors controlling rates of sorption from solution by porous adsorbents. For sorption of 2,4‐D on waste tire rubber granules, the sorption rate coefficient of second‐order kinetic equation was utilized indirectly to determine the rate‐limiting step. The diffusion coefficient lies in the scale of 10?8 cm2/s, and the pore diffusion coefficient is in the range of 10?9–10?10 cm2/s. So both film and pore diffusion are rate limiting. Considering external mass transfer from fluid to particle, using the effect of initial concentration, and using the effect of adsorbent size, no conclusion was reached regarding rate‐controlling steps. It is apparent from the study that external mass transfer (film diffusion) as well as intra‐particle diffusion (pore diffusion) play significant roles in the sorption process for 2,4‐D removal from water onto rubber granules.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号