首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   869篇
  免费   19篇
  国内免费   1篇
化学   500篇
晶体学   15篇
力学   35篇
数学   49篇
物理学   290篇
  2023年   3篇
  2022年   8篇
  2021年   14篇
  2020年   7篇
  2019年   11篇
  2018年   20篇
  2017年   11篇
  2016年   24篇
  2015年   15篇
  2014年   29篇
  2013年   49篇
  2012年   61篇
  2011年   69篇
  2010年   51篇
  2009年   41篇
  2008年   57篇
  2007年   66篇
  2006年   47篇
  2005年   37篇
  2004年   24篇
  2003年   28篇
  2002年   22篇
  2001年   14篇
  2000年   12篇
  1999年   10篇
  1998年   9篇
  1997年   14篇
  1996年   7篇
  1995年   5篇
  1994年   7篇
  1993年   9篇
  1992年   5篇
  1991年   6篇
  1990年   6篇
  1989年   7篇
  1988年   3篇
  1987年   5篇
  1986年   5篇
  1985年   7篇
  1984年   7篇
  1983年   10篇
  1982年   5篇
  1981年   4篇
  1980年   5篇
  1979年   4篇
  1978年   5篇
  1977年   5篇
  1976年   3篇
  1973年   3篇
  1918年   2篇
排序方式: 共有889条查询结果,搜索用时 31 毫秒
851.
A novel 6-(2-pyridinyl)-5,6-dihydrobenzimidazo[1,2-c]quinazoline (HL) serves as a first-time highly selective and sensitive ratiometric fluorescent chemosensor probe for oxorhenium (ReO(V)) ion in acetonitrile : water = 9 : 1 (v/v) at 25 °C. The decrease in fluorescence at 410 nm and increase in fluorescence at 478 nm with an isoemissive point at 444 nm in the presence of ReO(V) ion is accounted for by the formation of mononuclear [ReOL(2)Cl] complex, characterized by physico-chemical and spectroscopic tools. The fluorescence quantum yield of the chemosensor (HL) was only 0.198 at 410 nm, and it increased more than 3-fold in the presence of 2 equiv. of the ReO(V) ion at 478 nm. Interestingly, the introduction of other metal ions and relevant anions caused the fluorescence intensity at 478 nm to be either unchanged or weakened. The fluorescence-response fits a Hill coefficient of 2.088 indicates the formation of a 1 : 2 stoichiometry for the L-ReO(V) complex. In the concentration range of 0-20 μM of oxorhenium(V) species calibration graph was linear with correlation coefficient (R) of 0.99994 and the calibration sensitivity was found to be 4.0 × 10(-7) M. The cellular image in the confocal microscope clearly indicated the presence of ReO(V) in Candida albicans cells using this chemosensor (HL).  相似文献   
852.
A new 2,6-bis(5,6-dihydrobenzo[4,5]imidazo[1,2-c]quinazolin-6-yl)-4-methylphenol (1) serves as a highly selective and sensitive fluorescent probe for Zn(2+) in a HEPES buffer (50 mM, DMSO:water = 1:9 (v/v), pH = 7.2) at 25 °C. The increase in fluorescence in the presence of Zn(2+) is accounted for by the formation of dinuclear Zn(2+) complex [Zn(2)(C(35)H(25)N(6)O)(OH)(NO(3))(2)(H(2)O)] (2), characterized by X-ray crystallography. The fluorescence quantum yield of the chemosensor 1 is only 0.019, and it increases more than 12-fold (0.237) in the presence of 2 equiv of the zinc ion. Interestingly, the introduction of other metal ions causes the fluorescence intensity to be either unchanged or weakened. By incubation of cultured living cells (A375 and HT-29) with the chemosensor 1, intracellular Zn(2+) concentrations could be monitored through selective fluorescence chemosensing.  相似文献   
853.
(R)-2,3-Cyclohexylideneglyceraldehyde (1) has been elegantly exploited for a stereodivergent construction of the potential precursors (11a and 11b) of (L)-(+)- and (D)-(-)-carbovirs, respectively. The key steps in this approach were Luche's allylation of formaldehyde with allylic bromide 4c to produce 5 and ring-closing metathesis of 10b using Grubbs' first-generation catalyst to obtain 11. The moderate stereoselectivity of Luche's allylation reaction resulted in attaining stereodivergence in this approach which could be realized finally through easy chromatographic separation of the two isomers of the metathesis product to obtain homochiral precursors 11a and 11b in good amounts.  相似文献   
854.
Single phase Mn doped (2 at%) ZnO samples have been synthesized by the solid-state reaction technique. Before the final sintering at 500 °C, the mixed powders have been milled for different milling periods (6, 24, 48 and 96 h). The grain sizes of the samples are very close to each other (~32±4 nm). However, the defective state of the samples is different from each other as manifested from the variation of magnetic properties and electrical resistivity with milling time. All the samples have been found to be ferromagnetic with clear hysteresis loops at room temperature. The maximum value for saturation magnetization (0.11 μB/Mn atom) was achieved for 96 h milled sample. Electrical resistivity has been found to increase with increase in milling time. The most resistive sample bears the largest saturation magnetization. Variation of average positron lifetime with milling time bears a close similarity with that of the saturation magnetization. This indicates the key role played by open volume vacancy defects, presumably zinc vacancies near grain surfaces, in inducing ferromagnetic order in Mn doped ZnO. To attain optimum defect configuration favorable for ferromagnetism in this kind of samples proper choice of milling period and annealing conditions is required.  相似文献   
855.
Amorphous carbon thin films with quasi vertical nanowall-like morphologies have been synthesized via direct current plasma enhanced chemical vapor deposition on both copper and silicon substrates with acetylene as a carbon precursor. The deposition temperature and pressure were maintained at 750 °C and 5 mbar respectively. The morphology of the as-prepared samples has been investigated with the help of a field emission scanning electron microscope and an atomic force microscope, both revealing nanowall-like morphologies with thicknesses of the walls ∼6-15 nm. The as-prepared carbon nanowalls showed good field electron emission with a turn-on field as low as 1.39 V/μm. The effect of inter-electrode distance on the field electron emission has also been studied in detail.  相似文献   
856.
We present results from our investigations into correlating the styrene‐oxidation catalysis of atomically precise mixed‐ligand biicosahedral‐structure [Au25(PPh3)10(SC12H25)5Cl2]2+ (Au25bi) and thiol‐stabilized icosahedral core–shell‐structure [Au25(SCH2CH2Ph)18]? (Au25i) clusters with their electronic and atomic structure by using a combination of synchrotron radiation‐based X‐ray absorption fine‐structure spectroscopy (XAFS) and ultraviolet photoemission spectroscopy (UPS). Compared to bulk Au, XAFS revealed low Au–Au coordination, Au? Au bond contraction and higher d‐band vacancies in both the ligand‐stabilized Au clusters. The ligands were found not only to act as colloidal stabilizers, but also as d‐band electron acceptor for Au atoms. Au25bi clusters have a higher first‐shell Au coordination number than Au25i, whereas Au25bi and Au25i clusters have the same number of Au atoms. The UPS revealed a trend of narrower d‐band width, with apparent d‐band spin–orbit splitting and higher binding energy of d‐band center position for Au25bi and Au25i. We propose that the differences in their d‐band unoccupied state population are likely to be responsible for differences in their catalytic activity and selectivity. The findings reported herein help to understand the catalysis of atomically precise ligand‐stabilized metal clusters by correlating their atomic or electronic properties with catalytic activity.  相似文献   
857.
Hyperbranched polyurethanes are synthesized using TDI, PCL diol, butanediol, and pentaerythritol (1–5 wt%) as the B4 reactant with and without the monoglyceride of sunflower oil. The biodegradation, physico‐mechanical, and thermal properties are found to be tailored by varying the percentage weight of the branching unit. An MTT/hemolytic assay and subcutaneous implantation in Wistar rats followed by cytokine/ALP assay and histopathology studies confirm a better biocompatibility of HBPU with MG than without MG. HBPU supports the proliferation of dermatocytes with no toxic effect in major organs, in addition the in vitro degraded products are non‐toxic. Cell adherence and proliferation endorse the bio‐based HBPU as a prospective scaffold material in the niche of tissue engineering.

  相似文献   

858.
Integrase (IN) is the enzyme of human immunodeficiency virus (HIV) which inserts the viral DNA (vDNA) into the host genome for successful viral replication leading to the infection. However, the chemical basis of HIV IN catalysis is speculative due to lack of complete co-crystal structure. Using the recently published prototype foamy virus IN crystal structure, we developed a model structure of HIV IN showing interaction of vDNA, the metal (Mg2+) cofactor, and raltegravir (RLT) in the active site. Molecular docking and dynamics simulations studies showed that RLT uses it core central ring with diketo motif for Mg2+ chelation and bridge interaction with DDE motif. The triple arene interactions mediated by RLT with neighboring molecular motifs (Y143, cytosine, and adenine) is maintained during long simulation in wild type (WT). The fluorobenzyl and oxadiazole moieties of RLT forms aromatic stacking with cytosine base (head stacking) aromatic side chain of Y143 (tail stacking), respectively, while central ring further establishes aromatic stacking with distorted adenine base of vDNA (central stacking). The novel triple stacking systems were further explored to understand the molecular basis of drug resistance by molecular simulation. The in silico mutation (N155H, Q148H, and Q148H + G140S) and simulation studies elucidated the structural mechanism of resistance to RLT. The simulation studies provided the molecular basis for interdependency observed for the primary and secondary (Q148H and G140S) mutations and also explained the mechanism of viral fitness regain. Our study reveals that triple stacking and its consequence in terms of VdW energetic profile acts as a critical point to understand the drug-resistance. Here, we demonstrate that the root mean square deviation of centroid system (aromatic stacking) can be used as a major determinant of RLT binding toward the fold resistance. This is first kind of report, which discloses a strategy to explore the molecular level of drug resistance profile using aromatic interactions.  相似文献   
859.
We have computed the potential energy surfaces (PESs) of F2, Cl2, Br2, and I2 using the size-extensive state specific multireference coupled cluster (SS-MRCC) method. The MR character of the system considered here at large distances and the presence of low-lying intruder states are known to be the major causes of incorrect or inaccurate predictions of the PES. The SS-MRCC theory is tailored to treat degeneracies of varying extent while bypassing the intruder problem. The quality of the computed PES has been gauged by computing spectroscopic constants. The calculated properties show a good agreement with available experimental data and the errors in the calculated molecular properties compare favourably with the most elaborate current-generation calculations of the literature. The accuracy of the computed PES of F2 is such that it has been proved to calculate the vibrational spectrum of the 22 levels with a minimum and maximum absolute deviation of 2 and 57 cm?1, respectively, from the experimental values. The highly satisfactory performance of the SS-MRCC method, vis-a-vis the other sophisticated methods, in describing the vibrational levels is noticeable for one of the more difficult systems such as F2 clearly indicates that the present method is reliable in studying the vibrational energy levels.  相似文献   
860.
We describe a stereocontrolled method that converts tertiary allylic alcohols in pyrrolidine-2-carboxylic acid derivatives prepared from 3-(S)-hydroxy-l-proline to all-syn 3,4-disubstituted l-prolines. A study of various parameters to optimize the reductive rearrangement of tertiary allylic alcohols to tetrasubstituted olefins was conducted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号