首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5459篇
  免费   251篇
  国内免费   52篇
化学   3817篇
晶体学   70篇
力学   261篇
综合类   1篇
数学   623篇
物理学   990篇
  2023年   44篇
  2022年   320篇
  2021年   329篇
  2020年   241篇
  2019年   240篇
  2018年   206篇
  2017年   173篇
  2016年   281篇
  2015年   155篇
  2014年   209篇
  2013年   460篇
  2012年   327篇
  2011年   328篇
  2010年   204篇
  2009年   176篇
  2008年   218篇
  2007年   228篇
  2006年   186篇
  2005年   141篇
  2004年   146篇
  2003年   123篇
  2002年   139篇
  2001年   65篇
  2000年   45篇
  1999年   40篇
  1998年   35篇
  1997年   25篇
  1996年   36篇
  1995年   34篇
  1994年   37篇
  1993年   29篇
  1992年   35篇
  1991年   36篇
  1990年   28篇
  1989年   47篇
  1988年   40篇
  1987年   28篇
  1986年   31篇
  1985年   28篇
  1984年   37篇
  1983年   27篇
  1982年   18篇
  1981年   21篇
  1980年   22篇
  1979年   19篇
  1978年   23篇
  1977年   18篇
  1976年   14篇
  1974年   11篇
  1973年   11篇
排序方式: 共有5762条查询结果,搜索用时 15 毫秒
261.
Three new polyoxygenated diterpenoids with a rare 4-isopropyl-1,5,8a-trimethylperhydrophenanthrane structure of the klysimplexane skeleton, briarols A‒C (1‒3), and one eunicellin-based diterpenoid, briarol D (4), were isolated from Briareum violaceum, a gorgonian inhabiting Taiwanese waters. The chemical structures of these compounds were determined by employing extensive analyses of NMR and high-resolution electrospray ionization mass spectrometry (HRESIMS) data. Metabolites 1‒3 were found to possess the rarely found skeleton of the diterpenoid klysimplexin T. All isolated compounds showed very weak cytotoxic activity against the growth of three cancer cell lines. A plausible biosynthetic pathway for briarols A‒C from the coexisting eunicellin diterpenoid briarol D (4) was postulated.  相似文献   
262.
In the current study, in vitro antimicrobial and antioxidant activities and in vivo anti-inflammatory and analgesic activities of Scutellaria edelbergii Rech. f. (crude extract and subfractions, i.e., n-hexane, ethyl acetate (EtOAc), chloroform, n-butanol (n-BuOH) and aqueous) were explored. Initially, extraction and fractionation of the selected medicinal plant were carried out, followed by phytochemical qualitative tests, which were mostly positive for all the extracts. EtOAc fraction possessed a significant amount of phenolic (79.2 ± 0.30 mg GAE/g) and flavonoid (84.0 ± 0.39 mg QE/g) content. The EtOAc fraction of S. edelbergii exhibited appreciable antibacterial activity against Gram-negative (Escherichia coli and Klebsiella pneumoniae) strains and significant zones of inhibition were observed against Gram-positive bacterial strains (Bacillus subtilis and Staphylococcus aureus). However, it was found inactive against Candida Albicans and Fusarium oxysporum fungal strains. The chloroform fraction was the most effective with an IC50 value of 172 and 74 µg/mL against DPPH (1,1-Diphenyl-2-picryl-hydrazyl) and ABTS assays, in comparison with standard ascorbic acid 59 and 63 µg/mL, respectively. Moreover, the EtOAc fraction displayed significant in vivo anti-inflammatory activity (54%) using carrageenan-induced assay and significant (55%) in vivo analgesic activity using acetic acid-induced writing assay. In addition, nine known compounds, ursolic acid (UA), ovaul (OV), oleanolic acid (OA), β-sitosterol (BS), micromeric acid (MA), taraxasterol acetate (TA), 5,3′,4′-trihydroxy-7-methoxy flavone (FL-1), 5,7,4′-trihydroxy-6,3′-dimiethoxyflavone (FL-2) and 7-methoxy catechin (FL-3), were isolated from methanolic extract of S. edelbergii. These constituents have never been obtained from this source. The structures of all the isolated constituents were elucidated by spectroscopic means. In conclusion, the EtOAc fraction and all other fractions of S. edelbergii, in general, displayed a significant role as antibacterial, free radical scavenger, anti-inflammatory and analgesic agents which may be due to the presence of these constituents and other flavonoids.  相似文献   
263.
Severe acute respiratory syndrome coronavirus (SARS-CoV-2) disease is a global rapidly spreading virus showing very high rates of complications and mortality. Till now, there is no effective specific treatment for the disease. Aloe is a rich source of isolated phytoconstituents that have an enormous range of biological activities. Since there are no available experimental techniques to examine these compounds for antiviral activity against SARS-CoV-2, we employed an in silico approach involving molecular docking, dynamics simulation, and binding free energy calculation using SARS-CoV-2 essential proteins as main protease and spike protein to identify lead compounds from Aloe that may help in novel drug discovery. Results retrieved from docking and molecular dynamics simulation suggested a number of promising inhibitors from Aloe. Root mean square deviation (RMSD) and root mean square fluctuation (RMSF) calculations indicated that compounds 132, 134, and 159 were the best scoring compounds against main protease, while compounds 115, 120, and 131 were the best scoring ones against spike glycoprotein. Compounds 120 and 131 were able to achieve significant stability and binding free energies during molecular dynamics simulation. In addition, the highest scoring compounds were investigated for their pharmacokinetic properties and drug-likeness. The Aloe compounds are promising active phytoconstituents for drug development for SARS-CoV-2.  相似文献   
264.
The reaction of 5-(3,4-dimethoxyphenyl)-1,3,4-oxadiazole-2(3H)-thione 3 with formaldehyde solution and primary aromatic amines or 1-substituted piperazines, in ethanol at room temperature yielded the corresponding N-Mannich bases 3-arylaminomethyl-5-(3,4-dimethoxyphenyl)-1,3,4-oxadiazole-2(3H)-thiones 4a–l or 3-[(4-substituted piperazin-1-yl)methyl]-5-(3,4-dimethoxyphenyl)-1,3,4-oxadiazole-2(3H)-thiones 5a–d, respectively. The in vitro inhibitory activity of compounds 4a–l and 5a–d was assessed against pathogenic Gram-positive, Gram-negative bacteria, and the yeast-like pathogenic fungus Candida albicans. The piperazinomethyl derivatives 5c and 5d displayed broad-spectrum antibacterial activities the minimal inhibitory concentration (MIC) 0.5–8 μg/mL) and compounds 4j, 4l, 5a, and 5b showed potent activity against the tested Gram-positive bacteria. In addition, the anti-proliferative activity of the compounds was evaluated against prostate cancer (PC3), human colorectal cancer (HCT-116), human hepatocellular carcinoma (HePG-2), human epithelioid carcinoma (HeLa), and human breast cancer (MCF7) cell lines. The optimum anti-proliferative activity was attained by compounds 4l, 5a, 5c, and 5d.  相似文献   
265.
Cardamonin is a polyphenolic natural product that has been shown to possess cytotoxic activity against a variety of cancer cell lines. We previously reported the semi-synthesis of a novel Cu (II)–cardamonin complex (19) that demonstrated potent antitumour activity. In this study, we further investigated the bioactivity of 19 against MDA-MB-468 and PANC-1 cancer cells in an attempt to discover an effective treatment for triple-negative breast cancer (TNBC) and pancreatic cancer, respectively. Results revealed that 19 abolished the formation of MDA-MB-468 and PANC-1 colonies, exerted growth-inhibitory activity, and inhibited cancer cell migration. Further mechanistic studies showed that 19 induced DNA damage resulting in gap 2 (G2)/mitosis (M) phase arrest and microtubule network disruption. Moreover, 19 generated reactive oxygen species (ROS) that may contribute to induction of apoptosis, corroborated by activation of caspase-3/7, PARP cleavage, and downregulation of Mcl-1. Complex 19 also decreased the expression levels of p-Akt and p-4EBP1, which indicates that the compound exerts its activity, at least in part, via inhibition of Akt signalling. Furthermore, 19 decreased the expression of c-Myc in PANC-1 cells only, which suggests that it may exert its bioactivity via multiple mechanisms of action. These results demonstrate the potential of 19 as a therapeutic agent for TNBC and pancreatic cancer.  相似文献   
266.
MERS-CoV was identified for the first time in Jeddah, Saudi Arabia in 2012 in a hospitalized patient. This virus subsequently spread to 27 countries with a total of 939 deaths and 2586 confirmed cases and now has become a serious concern globally. Camels are well known for the transmission of the virus to the human population. In this report, we have discussed the prediction, designing, and evaluation of potential siRNA targeting the ORF1ab gene for the inhibition of MERS-CoV replication. The online software, siDirect 2.0 was used to predict and design the siRNAs, their secondary structure and their target accessibility. ORF1ab gene folding was performed by RNAxs and RNAfold software. A total of twenty-one siRNAs were selected from 462 siRNAs according to their scoring and specificity. siRNAs were evaluated in vitro for their cytotoxicity and antiviral efficacy in Huh7 cell line. No significant cytotoxicity was observed for all siRNAs in Huh7 cells. The in vitro study showed the inhibition of viral replication by three siRNAs. The data generated in this study provide preliminary and encouraging information to evaluate the siRNAs separately as well as in combination against MERS-CoV replication in other cell lines. The prediction of siRNAs using online software resulted in the filtration and selection of potential siRNAs with high accuracy and strength. This computational approach resulted in three effective siRNAs that can be taken further to in vivo animal studies and can be used to develop safe and effective antiviral therapies for other prevalent disease-causing viruses.  相似文献   
267.
The remarkable significance of electrode materials in industrial processes, energy, sustainability and diabetes monitoring has captivated scientists to develop advance nanomaterials for the benefit of life across the globe. Here in, the recent developments in nanostructured porous metal and metal oxide composite materials for supercapacitor applications and non-enzymatic glucose sensors (NEGS) has been extensively discussed. The essential and active electrode materials from the research and application perspective has been emphasized in detail. We have also evaluated the worthiness, taxonomical classification, efficiency, specific capacitance and sensitivity of these materials for the aforementioned potential applications. Eventually, we concluded the review by providing the aspect ratio, surface morphology, particle size and specific surface area of these materials that plays an indispensable role for their promising potential applications.  相似文献   
268.
In this work, we study the elimination of three bivalent metal ions (Cd2+, Cu2+, and Pb2+) by adsorption onto natural illitic clay (AM) collected from Marrakech region in Morocco. The characterization of the adsorbent was carried out by X-ray fluorescence, Fourier transform infrared spectroscopy and X-ray diffraction. The influence of physicochemical parameters on the clay adsorption capacity for ions Cd2+, Cu2+, and Pb2+, namely the adsorbent dose, the contact time, the initial pH imposed on the aqueous solution, the initial concentration of the metal solution and the temperature, was studied. The adsorption process is evaluated by different kinetic models such as the pseudo-first-order, pseudo-second-order, and Elovich. The adsorption mechanism was determined by the use of adsorption isotherms such as Langmuir, Freundlich, and Temkin models. Experiments have shown that heavy metals adsorption kinetics onto clay follows the same order, the pseudo-second order. The isotherms of adsorption of metal cations by AM clay are satisfactorily described by the Langmuir model and the maximum adsorption capacities obtained from the natural clay, using the Langmuir isotherm model equation, are 5.25, 13.41, and 15.90 mg/g, respectively for Cd(II), Cu(II), and Pb(II) ions. Adsorption of heavy metals on clay is a spontaneous and endothermic process characterized by a disorder of the medium. The values of ΔH are greater than 40 kJ/mol, which means that the interactions between clay and heavy metals are chemical in nature.  相似文献   
269.
In recent years, indole derivatives have acquired conspicuous significance due to their wide spectrum of biological activities—antibacterial, antiviral, and anticonvulsant. This compound is derived from naturally grown plants. Therefore, synthesis of a novel “3-(Naphthalen-1-ylimino)indolin-2-one” compound (2) and its analysis using UPLC systems along with antimicrobial assessment was the aim of the current study. Isatin was used as a parent drug for synthesizing compound (2). Liquid Chromatographic analysis was performed using a C18 BEH column (1.7 μm 2.1 × 50 mm) by UPLC systems. Degradation studies were carried out to see whether acid, base, thermal, and oxidizing agents had any impact on the synthesized molecule in stress conditions (100 °C). A lipid-based self-nanoemulsifying formulation was developed and selectivity, specificity, recovery, accuracy, and precision were measured as part of the UPLC system’s validation process. Antimicrobial studies were conducted using gram-positive and gram-negative bacteria. The standard samples were run with a concentration range of 5.0–100.0 μg/mL using the isocratic mobile phase comprising of methanol/water (70/30 %v/v) at 234 nm; good linearity (R2 = 0.9998) was found. The lower limits of detection (LOD) and quantitation (LOQ) of the method were found to be 0.81 μg/mL and 2.5 μg/mL, respectively. The coefficients of variation were found to be less than 2%. The antimicrobial study suggests that compound (2) has a substantial growth effect against gram-negative bacteria. It was successfully synthesized and applied to measure the concentrations in lipid-based dosage form, along with potent antimicrobial activities.  相似文献   
270.
This study evaluates the kinetic hydrate inhibition (KHI) performance of four quaternary ammonium hydroxides (QAH) on mixed CH4 + CO2 hydrate systems. The studied QAHs are; tetraethylammonium hydroxide (TEAOH), tetrabutylammonium hydroxide (TBAOH), tetramethylammonium hydroxide (TMAOH), and tetrapropylammonium hydroxide (TPrAOH). The test was performed in a high-pressure hydrate reactor at temperatures of 274.0 K and 277.0 K, and a concentration of 1 wt.% using the isochoric cooling method. The kinetics results suggest that all the QAHs potentially delayed mixed CH4 + CO2 hydrates formation due to their steric hindrance abilities. The presence of QAHs reduced hydrate formation risk than the conventional hydrate inhibitor, PVP, at higher subcooling conditions. The findings indicate that increasing QAHs alkyl chain lengths increase their kinetic hydrate inhibition efficacies due to better surface adsorption abilities. QAHs with longer chain lengths have lesser amounts of solute particles to prevent hydrate formation. The outcomes of this study contribute significantly to current efforts to control gas hydrate formation in offshore petroleum pipelines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号