首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3508篇
  免费   158篇
  国内免费   61篇
化学   2674篇
晶体学   46篇
力学   128篇
综合类   2篇
数学   271篇
物理学   606篇
  2024年   19篇
  2023年   28篇
  2022年   160篇
  2021年   148篇
  2020年   121篇
  2019年   153篇
  2018年   166篇
  2017年   142篇
  2016年   206篇
  2015年   145篇
  2014年   173篇
  2013年   349篇
  2012年   277篇
  2011年   274篇
  2010年   193篇
  2009年   155篇
  2008年   204篇
  2007年   130篇
  2006年   105篇
  2005年   60篇
  2004年   75篇
  2003年   49篇
  2002年   70篇
  2001年   42篇
  2000年   43篇
  1999年   15篇
  1998年   22篇
  1997年   9篇
  1996年   11篇
  1995年   12篇
  1994年   12篇
  1993年   10篇
  1992年   8篇
  1990年   12篇
  1989年   10篇
  1988年   6篇
  1987年   8篇
  1986年   5篇
  1985年   7篇
  1984年   8篇
  1983年   5篇
  1982年   5篇
  1981年   6篇
  1980年   7篇
  1979年   7篇
  1978年   6篇
  1977年   6篇
  1976年   5篇
  1974年   7篇
  1973年   5篇
排序方式: 共有3727条查询结果,搜索用时 0 毫秒
41.
Rapid, efficient, simple and green procedure for the synthesis of 4,5-dihydro-1H-pyrazole-1-carbothioamides via the multicomponent reaction of aryl aldehydes, acetophenones and thiosemicarbazide in water in the presence of tetrabutylammonium hydroxide under microwave irradiation is reported.  相似文献   
42.
In the present study, hard ferromagnetic (M-type strontium hexaferrite) SrFe12O19 was co-doped by Zn and Zr for magnetic hyperthermia applications. As a result of the high concentration of single domain SrFe12O19 nanoparticles (suspended in the ferrofluid), they found a large hydrodynamic diameter, which caused a long-time Brownian relaxation under the AC magnetic field. On the other hand, increasing the Zn-Zr content (low concentration of SrFe12O19) led to a drop in anisotropy, which coincided with a short-time N´eel relaxation. All of the substituted samples with a multi-disperse state in ferrofluid exhibited an almost equal amount of the N´eel and Brownian effects. Consequently, the magnetic saturation (Ms) was considered as the dominant factor in the specific absorption rate (SAR) of the substituted samples. Transformation to the mono-disperse state was followed by the decrease of the Brownian relaxation time and hence the increase of the SAR. The interesting point in mono-disperse state was the heat generation of pure SrFe12O19 under the AC magnetic field as a result of the decrement of the Brownian relaxation time.  相似文献   
43.
The phenomena of heat and mass transfer during the flow of non-Newtonian transfer are amongst the core subjects in mechanical sciences. Recently, the nanomaterials are among the eminent tools for improving the low thermal conductivity of working fluids. Therefore, in view of the existing contributions, this article presents a two-dimensional numerical simulation for the transient flow of a non-Newtonian nanofluid generated by an expanding/contracting circular cylinder. This critical review further explores the impacts of variable magnetic field, thermal radiation, velocity slip and convective boundary conditions. The basic governing equations for Williamson fluid flow are formulated with the assistance of boundary layer approximations. The non-dimensional form of partially coupled ordinary differential equations has been tackled numerically by utilizing versatile Runge–Kutta integration scheme. The momentum, thermal and concentration characteristics are investigated with respect to several critical parameters, like, Weissenberg number, unsteadiness parameter, viscosity ratio parameter, slip parameter, suction parameter, magnetic parameter, thermophoresis parameter, Brownian motion parameter, Prandtl number, Lewis number and Biot number. The outcomes of the systematic reviews of these parameters and forest plots are illustrated. The study reveals that multiple solutions for the considered problem occurs for diverse values of involved physical parameters. The computed results indicate that the friction and heat transfer coefficients are significantly raised by the magnetic parameter for upper branch solutions.  相似文献   
44.
SaraDadras  HamidRezaMomeni 《中国物理 B》2010,19(6):60506-060506
A new four-dimensional quadratic smooth autonomous chaotic system is presented in this paper, which can exhibit periodic orbit and chaos under the conditions on the system parameters. Importantly, the system can generate one-, two-, three- and four-scroll chaotic attractors with appropriate choices of parameters. Interestingly, all the attractors are generated only by changing a single parameter. The dynamic analysis approach in the paper involves time series, phase portraits, Poincar\'{e} maps, a bifurcation diagram, and Lyapunov exponents, to investigate some basic dynamical behaviours of the proposed four-dimensional system.  相似文献   
45.
Tin oxide (SnO2) thin films (about 200 nm thick) have been deposited by electron beam evaporation followed by annealing in air at 350-550 °C for two hours. Optical, electrical and structural properties were studied as a function of annealing temperature. The as-deposited film is amorphous, while all other annealed films are crystalline (having tetragonal structure). XRD suggest that the films are composed of nanoparticles of 5-10 nm. Raman analysis and optical measurements suggest quantum confinement effects that are enhanced with annealing temperature. For instance, Raman peaks of the as-deposited films are blue-shifted as compared to those for bulk SnO2. Blue shift becomes more pronounced with annealing temperature. Optical band gap energy of amorphous SnO2 film is 3.61 eV, which increases to about 4.22 eV after crystallization. Two orders of magnitude decrease in resistivity is observed after annealing at 350-400 °C due to structural ordering and crystallization. The resistivity, however, increases slightly with annealing temperature above 400 °C, possibly due to improvement in stoichiometry and associated decrease in charge carrier density.  相似文献   
46.
Undoped and doped ZnO with 1 at.% (atomic percentage) chromium (Cr) was synthesized by RF reactive co-sputtering for oxygen gas sensing applications. The prepared films showed a highly c-oriented phase with a dominant (0 0 2) peak at a Bragg angle of around 34.2°. The operating temperature of the prepared ZnO sensor was around 350 °C and shifted to around 250 °C for the doped ZnO sensor which is lower than that of previously reported work. The sensitivity of the sensor toward oxygen gas was enhanced by doping ZnO with 1 at.% Cr. Good stability and repeatability of the sensor were demonstrated when tested under different concentration of oxygen atmosphere.  相似文献   
47.
48.
49.
We investigate generalized chaplygin gas for warm inflationary scenario in the context of locally rotationally symmetric Bianchi type I universe model.We assume two different cases of dissipative coefficient,i.e.,constant as well as function of scalar field.We construct dynamical equations as well as a relationship between scalar and radiation energy densities under slow-roll approximation.We also derive slow-roll parameters,scalar and tensor power spectra,scalar spectral index,tensor to scalar ratio for analyzing inflationary background during high dissipative regime.We also use the WMAP7 data for the discussion of our parameters.  相似文献   
50.
Abdul Wahab 《中国物理 B》2021,30(9):94202-094202
We aim to present a new scheme for high-dimensional atomic microscopy via double electromagnetically induced transparency in a four-level tripod system. For atom–field interaction, we construct a spatially dependent field by superimposing three standing-wave fields(SWFs) in 3 D-atom localization. We achieve a high precision and high spatial resolution of an atom localization by appropriately adjusting the system variables such as field intensities and phase shifts. We also see the impact of Doppler shift and show that it dramatically deteriorates the precision of spatial information on 3 D-atom localization. We believe that our suggested scheme opens up a fascinating way to improve the atom localization that supplies some practical applications in atom nanolithography, and Bose–Einstein condensation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号