首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   741457篇
  免费   5968篇
  国内免费   2329篇
化学   361275篇
晶体学   10668篇
力学   39570篇
综合类   18篇
数学   117325篇
物理学   220898篇
  2021年   5849篇
  2020年   6409篇
  2019年   7286篇
  2018年   19233篇
  2017年   19026篇
  2016年   19131篇
  2015年   8375篇
  2014年   12945篇
  2013年   30240篇
  2012年   26224篇
  2011年   36832篇
  2010年   25299篇
  2009年   25676篇
  2008年   31532篇
  2007年   33399篇
  2006年   23682篇
  2005年   22227篇
  2004年   20915篇
  2003年   19354篇
  2002年   18365篇
  2001年   19033篇
  2000年   14805篇
  1999年   11530篇
  1998年   9939篇
  1997年   9692篇
  1996年   9231篇
  1995年   8319篇
  1994年   8245篇
  1993年   8072篇
  1992年   8514篇
  1991年   8990篇
  1990年   8562篇
  1989年   8438篇
  1988年   8313篇
  1987年   8073篇
  1986年   7666篇
  1985年   9983篇
  1984年   10437篇
  1983年   8646篇
  1982年   9051篇
  1981年   8637篇
  1980年   8252篇
  1979年   8770篇
  1978年   9021篇
  1977年   8886篇
  1976年   8863篇
  1975年   8379篇
  1974年   8263篇
  1973年   8577篇
  1972年   6222篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 56, No. 2, pp. 268–273, February, 1992.  相似文献   
982.
Coupled and decoupled Taylor-Galerkin algorithms are considered for viscoelastic flow and a model problem—transient startup Poiseuille flow in a channel under a fixed pressure gradient. All algorithms reproduce the steady-state solutions and are stable at high elasticity numbers (E). For a fixed mesh, the coupled and decoupled versions (TGC and TGD) give exceptional time-accuracy at low elasticity numbers [to within O(1%) at E = 1] and reasonable accuracy at high elasticity numbers [to within O(10%) at E = 10, 100]. By definition, the decoupled false-transient scheme (TGF), which uses different time scales for velocity and stress time stepping, provides a poor transient history. Where the main requirement is to compute a steady-state algorithm efficiency is crucial. The TGF scheme attains a steady state between six to eight times faster than does the TGC scheme, and the latter is over twice as fast as the TGD form. © 1994 John Wiley & Sons, Inc.  相似文献   
983.
984.
985.
In vivo pelvic imaging of 39 women and in vitro relaxation time measurements of four uterine specimens were performed using an ultra low field (0.02 T) MRI unit. Average T1 times measured in vitro at 37 degrees C for the myometrium and endometrium were 206 ms (SD 47 ms) and 389 ms (SD 21 ms), respectively. Corresponding T2 times were 95 ms (SD 20 ms) and 167 ms (SD 13 ms). The proton relaxation of almost all myometrial specimens proved to be biexponential, but of all endometrial specimens was monoexponential. Contrast measurements between endometrium versus myometrium and myometrium versus the junctional zone were performed after imaging 18 volunteer women using different pulse sequence parameters. Normal uterine structures were optimally demonstrated by SE 700/70. Relatively short repetition times could be used, because spin-lattice relaxation times were short at the low magnetic field. Consequently, the short repetition times allowed averaging of four excitations to create adequate images within an acceptable scanning time. In addition to T2-weighted images a T1-weighted inversion recovery sequence with a short inversion time of 50 ms (IR 1000/50/40) adequately differentiated the three uterine zones. Although pathologic lesions of the uterus including leiomyomas, anomalies and carcinomas were well demonstrated, especially with the T2-weighted spin echo pulse sequence, further investigations are needed to evaluate the optimal technique for ultra low field MR imaging of uterine tumors.  相似文献   
986.
Product integration rules generalizing the Fej?r, Clenshaw-Curtis,and Filippi quadrature rules respectively are derived for integralswith trigonometric and hyperbolic weight factors. The Chebyshevmoments of the weight functions are found to be given by well-conditionedexpressions, in terms of hypergeometric functions 0F1. An a priori error estimator is discussed which is shown bothto avoid wasteful invocation of the integration rule and toincrease significantly the robustness of the automatic quadratureprocedure. Then, specializing to extended Clenshaw-Curtis (ECC) rules,three types of a posteriori error estimates are considered andthe existence of a great risk of their failure is demonstratedby large scale validation tests. An empirical error estimator,superseding them for slowly varying integrands, is found toresult in a spectacular increase in the output reliability. Finally, enhancements in the control of the interval subdivisionstrategy aiming at increasing code robustness is discussed.Comparison with the code DQAWO of QUADPACK, with about a hundredthousand solved integrals, is illustrative of the increasedrobustness and error estimate reliability of our computer codeimplementation of the ECC rules.  相似文献   
987.
988.
989.
Latent macroscopic defects in silicon are detected by electrical and electron microscope measurements. They lead to anomalous temperature dependence of the Fermi level position and growth in the hole capture coefficient. A level with energy of 0.55 eV measured from the conduction zone controls the recombination process. It is proposed that macroscopic defects develop upon association of oxygen-silicon vacancy complexes. Action of an electron beam leads to reversible changes which increase upon multiple scanning, affecting the value of the diffusion length.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 71–75, April, 1991.  相似文献   
990.
A nonperturbative method is suggested for calculating functional integrals. Its efficiency is demonstrated for the quantum-mechanical anharmonic oscillator. A quantity we are interested in is represented by a series, a finite number of terms of which describes not only the region of small coupling constants but well reproduces the strong coupling limit. The method is formulated only in terms of the Gaussian functional quadratures and diagrams are used of the conventional perturbation theory.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号