首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   724719篇
  免费   6140篇
  国内免费   2276篇
化学   358956篇
晶体学   10080篇
力学   38176篇
综合类   24篇
数学   113059篇
物理学   212840篇
  2021年   5820篇
  2020年   6349篇
  2019年   7171篇
  2018年   18840篇
  2017年   18727篇
  2016年   18908篇
  2015年   8473篇
  2014年   12685篇
  2013年   29730篇
  2012年   26299篇
  2011年   36982篇
  2010年   25161篇
  2009年   25482篇
  2008年   31737篇
  2007年   33351篇
  2006年   23797篇
  2005年   22328篇
  2004年   20966篇
  2003年   19393篇
  2002年   18253篇
  2001年   18788篇
  2000年   14628篇
  1999年   11301篇
  1998年   9628篇
  1997年   9396篇
  1996年   9003篇
  1995年   8012篇
  1994年   7912篇
  1993年   7632篇
  1992年   8151篇
  1991年   8628篇
  1990年   8121篇
  1989年   8009篇
  1988年   7826篇
  1987年   7634篇
  1986年   7301篇
  1985年   9545篇
  1984年   9859篇
  1983年   8227篇
  1982年   8669篇
  1981年   8076篇
  1980年   7784篇
  1979年   8212篇
  1978年   8492篇
  1977年   8345篇
  1976年   8329篇
  1975年   7982篇
  1974年   7744篇
  1973年   8088篇
  1972年   5717篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
51.
Settling of a large solid particle in bioconvection flow caused by gyrotactic microorganisms is investigated. The particle is released from the top of the bioconvection chamber; its settling pattern depends on whether it is released in the centre of the bioconvection plume or at its periphery. The Chimera method is utilized; a subgrid is generated around a moving particle. The method suggested by Liu and Wang (Comput. Fluid 2004; 33 :223–255) is further developed to account for the presence of a moving boundary in the streamfunction‐vorticity formulation using the finite‐difference method. A number of cases for different release positions of the particle are computed. It is demonstrated that bioconvection can either accelerate or decelerate settling of the particle depending on the initial position of the particle relative to the plume centre. It is also shown that the particle impacts bioconvection plume by changing its shape and location in the chamber. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
52.
Nicholas Nathan tries to resist the current version of the causal argument for sense-data in two ways. First he suggests that, on what he considers to be the correct re-construction of the argument, it equivocates on the sense of proximate cause. Second he defends a form of disjunctivism, by claiming that there might be an extra mechanism involved in producing veridical hallucination, that is not present in perception. I argue that Nathan’s reconstruction of the argument is not the appropriate one, and that, properly interpreted, the argument does not equivocate on proximate cause. Furthermore, I claim that his postulation of a modified mechanism for hallucinations is implausibly ad hoc.  相似文献   
53.
We study initial boundary value problems for linear scalar evolutionpartial differential equations, with spatial derivatives ofarbitrary order, posed on the domain {t > 0, 0 < x <L}. We show that the solution can be expressed as an integralin the complex k-plane. This integral is defined in terms ofan x-transform of the initial condition and a t-transform ofthe boundary conditions. The derivation of this integral representationrelies on the analysis of the global relation, which is an algebraicrelation defined in the complex k-plane coupling all boundaryvalues of the solution. For particular cases, such as the case of periodic boundaryconditions, or the case of boundary value problems for even-orderPDEs, it is possible to obtain directly from the global relationan alternative representation for the solution, in the formof an infinite series. We stress, however, that there existinitial boundary value problems for which the only representationis an integral which cannot be written as an infinite series.An example of such a problem is provided by the linearized versionof the KdV equation. Similarly, in general the solution of odd-orderlinear initial boundary value problems on a finite intervalcannot be expressed in terms of an infinite series.  相似文献   
54.
55.
56.
Experiments concerning the properties of soap films have recently been carried out and these systems have been proposed as experimental versions of theoretical two‐dimensional liquids. A silk filament introduced into a flowing soap film, was seen to demonstrate various stable modes, and these were, namely, a mode in which the filament oscillates and one in which the filament is stationary and aligns with the flow of the liquid. The system could be forced from the oscillatory mode into the non‐ oscillatory mode by varying the length of the filament. In this article we use numerical and computational techniques in order to simulate the strongly coupled behaviour of the filament and the fluid. Preliminary results are presented for the specific case in which the filament is seen to oscillate continuously for the duration of our simulation. We also find that the filament oscillations are strongly suppressed when we reduce the effective length of the filament. We believe that these results are reminiscent of the different oscillatory and non‐oscillatory modes observed in experiment. The numerical solutions show that, in contrast to experiment, vortices are created at the leading edge of the filament and are preferentially grown in the curvature of the filament and are eventually released from the trailing edge of the filament. In a similar manner to oscillating hydrofoils, it seems that the oscillating filaments are in a minimal energy state, extracting sufficient energy from the fluid to oscillate. In comparing numerical and experimental results it is possible that the soap film does have an effect on the fluid flow especially in the boundary layer where surface tension forces are large. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
57.
The interaction between multiple incompressible air jets has been studied numerically and experimentally. The numerical predictions have been first validated using experimental data for a single jet configuration. The spreading features of five unequal jets in the configuration of one larger central jet surrounded by four smaller equi‐distant jets, have been studied, for different lateral spacing ratios of 1.5, 2.0 and 2.5 and a central jet Reynolds number of 1.24×105 (corresponding to a Mach number of 0.16). Flow of five equal jets has also been simulated, for the sake of comparison. The jet interactions commence at an axial distance of about 3–4 diameters and complete by an axial distance of about 10 diameters for the lowest spacing ratio of 1.5. For larger spacing ratios, the length required for the start and completion of jet interaction increase. Peripheral jets bend more towards the central jet and merge at a smaller distance, when their sizes are smaller than that of the central jet. The entrainment ratio for multiple jets is higher than that for a single jet. Excellent agreement is observed between the experimental data and theoretical predictions for both mean flow field and turbulent quantities, at regions away from the jet inlet. The potential core length and initial jet development, however, are not predicted very accurately due to differences in the assumed and actual velocity profiles at the jet inlet. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
58.
A preconditioning approach based on the artificial compressibility formulation is extended to solve the governing equations for unsteady turbulent reactive flows with heat release, at low Mach numbers, on an unstructured hybrid grid context. Premixed reactants are considered and a flamelet approach for combustion modelling is adopted using a continuous quenched mean reaction rate. An overlapped cell‐vertex finite volume method is adopted as a discretisation scheme. Artificial dissipation terms for hybrid grids are explicitly added to ensure a stable, discretised set of equations. A second‐order, explicit, hybrid Runge–Kutta scheme is applied for the time marching in pseudo‐time. A time derivative of the dependent variable is added to recover the time accuracy of the preconditioned set of equations. This derivative is discretised by an implicit, second‐order scheme. The resulting scheme is applied to the calculation of an infinite planar (one‐dimensional) turbulent premixed flame propagating freely in reactants whose turbulence is supposed to be frozen, homogeneous and isotropic. The accuracy of the results obtained with the proposed method proves to be excellent when compared to the data available in the literature. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
59.
Large eddy simulations of two basic configurations (decay of isotropic turbulence, and the academic plane channel flow) with heat transfer have been performed comparing several convection numerical schemes, in order to discuss their ability to evaluate temperature fluctuations properly. Results are compared with the available incompressible heat transfer direct numerical simulation data. It is shown that the use of regularizing schemes (such as high order upwind type schemes) for the temperature transport equation in combination with centered schemes for momentum transport equation gives better results than the use of centred schemes for both equations. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
60.
A high‐order accurate, finite‐difference method for the numerical solution of incompressible flows is presented. This method is based on the artificial compressibility formulation of the incompressible Navier–Stokes equations. Fourth‐ or sixth‐order accurate discretizations of the metric terms and the convective fluxes are obtained using compact, centred schemes. The viscous terms are also discretized using fourth‐order accurate, centred finite differences. Implicit time marching is performed for both steady‐state and time‐accurate numerical solutions. High‐order, spectral‐type, low‐pass, compact filters are used to regularize the numerical solution and remove spurious modes arising from unresolved scales, non‐linearities, and inaccuracies in the application of boundary conditions. The accuracy and efficiency of the proposed method is demonstrated for test problems. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号