全文获取类型
收费全文 | 723608篇 |
免费 | 6333篇 |
国内免费 | 2066篇 |
专业分类
化学 | 365511篇 |
晶体学 | 10678篇 |
力学 | 36166篇 |
综合类 | 20篇 |
数学 | 96430篇 |
物理学 | 223202篇 |
出版年
2021年 | 6533篇 |
2020年 | 7007篇 |
2019年 | 7915篇 |
2018年 | 10609篇 |
2017年 | 10876篇 |
2016年 | 15141篇 |
2015年 | 8545篇 |
2014年 | 14184篇 |
2013年 | 33116篇 |
2012年 | 25478篇 |
2011年 | 30462篇 |
2010年 | 22591篇 |
2009年 | 22537篇 |
2008年 | 28417篇 |
2007年 | 28103篇 |
2006年 | 25760篇 |
2005年 | 22945篇 |
2004年 | 21301篇 |
2003年 | 19109篇 |
2002年 | 18979篇 |
2001年 | 20983篇 |
2000年 | 16021篇 |
1999年 | 12482篇 |
1998年 | 10637篇 |
1997年 | 10404篇 |
1996年 | 9744篇 |
1995年 | 8705篇 |
1994年 | 8651篇 |
1993年 | 8345篇 |
1992年 | 8954篇 |
1991年 | 9500篇 |
1990年 | 9063篇 |
1989年 | 8934篇 |
1988年 | 8553篇 |
1987年 | 8509篇 |
1986年 | 8117篇 |
1985年 | 10362篇 |
1984年 | 10784篇 |
1983年 | 9021篇 |
1982年 | 9310篇 |
1981年 | 8734篇 |
1980年 | 8425篇 |
1979年 | 9038篇 |
1978年 | 9276篇 |
1977年 | 9115篇 |
1976年 | 9041篇 |
1975年 | 8675篇 |
1974年 | 8511篇 |
1973年 | 8808篇 |
1972年 | 6321篇 |
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
111.
A. Hamraoui M. Cachile C. Poulard A.M. Cazabat 《Colloids and surfaces. A, Physicochemical and engineering aspects》2004,250(1-3):215-221
Fingering instabilities are observed at the contact line of drops of surfactant solutions spreading spontaneously on solid surfaces coated by a film of solvent. The occurrences of instabilities, and the characteristics of the instability pattern, are controlled by the surfactant concentration and the thickness of the film adsorbed or deposited on the substrate. This work provides experimental data as a basis for forthcoming theoretical analyses. 相似文献
112.
George Z. Papageorgiou George P. Karayannidis Dimitris N. Bikiaris Anagnostis Stergiou George Litsardakis Sofoklis S. Makridis 《Journal of Polymer Science.Polymer Physics》2004,42(5):843-860
The crystallization behavior of a series of poly(ethylene‐co‐butylene naphthalate) (PEBN) random copolymers was studied. Wide‐angle X‐ray diffraction (WAXD) patterns showed that the crystallization of these copolymers could occur over the entire range of compositions. This resulted in the formation of poly(ethylene naphthalate) or poly(butylene naphthalate) crystals, depending on the composition of the copolymers. Sharp diffraction peaks were observed, except for 50/50 PEBN. Eutectic behavior was also observed. This showed isodimorphic cocrystallization of the PEBN copolymers. The variation of the enthalpy of fusion of the copolymers with the composition was estimated. The isothermal and nonisothermal crystallization kinetics were studied. The crystallization rates were found to decrease as the comonomer unit content increased. The tensile properties were also measured and were found to decrease as the butylene naphthalate content of the copolymers increased. For initially amorphous specimens, orientation was proved by WAXD patterns after drawing, but no crystalline reflections were observed. However, the fast crystallization of drawn specimens occurred when they were heated above the glass‐transition temperature. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 843–860, 2004 相似文献
113.
Alexandros A. Skordos Ivana K. Partridge 《Journal of Polymer Science.Polymer Physics》2004,42(1):146-154
This article presents a new methodology for the quantitative determination of the progress of the curing reaction of a thermosetting resin, using the results of electrical impedance spectroscopy. The method is an extension of the use of the imaginary impedance maximum as a reaction progress indicator and is based on the demonstration of a close correlation between the reaction rate, as measured by conventional differential scanning calorimetry, and the rate of change of the value of the imaginary impedance spectrum maximum. Tests on a commercial aerospace epoxy resin under both isothermal and dynamic heating conditions with calorimetry and impedance spectroscopy have demonstrated the validity of the method and set the accuracy limits involved. This technique can be used as a real-time online control tool for thermoset composite manufacturing. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 146–154, 2004 相似文献
114.
Aric Opdahl Roger A. Phillips Gabor A. Somorjai 《Journal of Polymer Science.Polymer Physics》2004,42(3):421-432
The surface compositions and morphologies of melt‐quenched blends of isotactic polypropylene (iPP) with aspecific poly(ethylene‐co‐propylene) rubber (aEPR) were characterized by atomic force microscopy, optical microscopy, and X‐ray photoelectron spectroscopy. The surface morphologies and compositions formed in the melt are frozen‐in by crystallization of the iPP component and, depending on the processing conditions, are enriched in iPP or aEPR or contain a phase‐separated mix of iPP and aEPR. Enrichment of iPP is observed for blends melted in open air, in agreement with earlier work showing the high surface activity of atactic polypropylene at open interfaces. Surface segregation of iPP is suppressed at confined interfaces. Blends melt‐pressed between hydrophilic and hydrophobic substrates have phase‐separated iPP and aEPR domains present at the surface, which grow in size as the melt time increases. Surface enrichment of aEPR is observed after exposing melt‐pressed blends to n‐hexane vapor, which preferentially solvates aEPR and draws it to the surface. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 421–432, 2004 相似文献
115.
S. Mohri D. Amutha Rani Y. Yamamoto Y. Tsujita H. Yoshimizu 《Journal of Polymer Science.Polymer Physics》2004,42(2):238-245
Syndiotactic polystyrene (sPS) has various crystalline forms such as α, β, γ, and δ forms, and a mesophase depending on the preparation method. In this study, we focused on the mesophase with the molecular cavity of sPS, which is obtained by step‐wise extraction of the guest molecules from the sPS δ form. To prepare the mesophase containing different shapes and sizes of the cavity, two kinds of the sPS δ form membrane cast from either toluene or chloroform solution were first prepared and then the guest molecules were removed by a step‐wise extraction method using acetone and methanol. We could succeed in the preparation of two kinds of mesophase with different shapes and sizes of the molecular cavity. Either toluene or chloroform vapor sorption to the sPS mesophase membranes was examined at 25 °C. Sorption analysis indicates that the mesophase with large molecular cavities can mainly sorb large molecules; on the other hand, the mesophase with small cavities can sorb only the small molecules, and is unable to sorb a large amount of large molecule because the cavity was too small to sorb the large molecules. Therefore, the sPS mesophase membrane has sorption selectivity based on the size of the molecular cavity. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 238–245, 2004 相似文献
116.
K. Sakurai Y. Kondo K. Miyazaki T. Okamoto S. Irie T. Sasaki 《Journal of Polymer Science.Polymer Physics》2004,42(13):2595-2603
Aiming to develop a high‐performance fiber‐reinforced rubber from styrene–butadiene rubber (SBR), we applied a special technique using electron‐beam (EB)‐irradiation‐induced graft polymerization to ultrahigh‐molecular‐weight‐polyethylene (UHMWPE) fibers. The molecular interaction between the grafted UHMWPE fibers and an SBR matrix was studied through the evaluation of the adhesive behavior of the fibers in the SBR matrix. Although UHMWPE was chemically inert, two monomers, styrene and N‐vinyl formamide (NVF), were examined for graft polymerization onto the UHMWPE fiber surface. Styrene was not effective, but NVF was graft‐polymerized onto the UHMWPE fibers with this special method. A methanol/water mixture and dioxane were used as solvents for NVF, and the effects of the solvents on the grafting percentage of NVF were also examined. The methanol/water mixture was more effective. A grafting percentage of 16.4% was the highest obtained. This improved the adhesive force threefold with respect to that of untreated UHMWPE fibers. These results demonstrated that EB irradiation enabled graft polymerization to occur even on the inert surface of UHMWPE fibers. However, the mechanical properties of the fibers could be compromised according to the dose of EB irradiation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2595–2603, 2004 相似文献
117.
Tae Young Kim Dong Myung Kim Won Jung Kim Tae Hee Lee Kwang S. Suh 《Journal of Polymer Science.Polymer Physics》2004,42(15):2813-2820
The effect of the triblock copolymer poly[styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] (SEBS) on the formation of the space charge of immiscible low‐density polyethylene (LDPE)/polystyrene (PS) blends was investigated. Blends of 70/30 (wt %) LDPE/PS were prepared through melt blending in an internal mixer at a blend temperature of 220 °C. The amount of charge that accumulated in the 70% LDPE/30% PS blends decreased when the SEBS content increased up to 10 wt %. For compatibilized and uncompatibilized blends, no significant change in the degree of crystallinity of LDPE in the blends was observed, and so the effect of crystallization on the space charge distribution could be excluded. Morphological observations showed that the addition of SEBS resulted in a domain size reduction of the dispersed PS phase and better interfacial adhesion between the LDPE and PS phases. The location of SEBS at a domain interface enabled charges to migrate from one phase to the other via the domain interface and, therefore, resulted in a significant decrease in the amount of space charge for the LDPE/PS blends with SEBS. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2813–2820, 2004 相似文献
118.
L. A. Utracki 《Journal of Polymer Science.Polymer Physics》2004,42(15):2909-2915
The Simha and Somcynsky (S–S) statistical thermodynamics theory was used to compute the solubility parameters as a function of temperature and pressure [δ = δ(T, P)], for a series of polymer melts. The characteristic scaling parameters required for this task, P*, T*, and V*, were extracted from the pressure–temperature–volume (PVT) data. To determine the potential polymer–polymer miscibility, the dependence of δ versus T (at ambient pressure) was computed for 17 polymers. Close proximity of the δ versus T curves for four miscible polymer pairs: PPE/PS, PS/PVME, and PC/PMMA signaled the usefulness of this approach. It is noteworthy, that the tabulated solubility parameters (derived from the solution data under ambient conditions) propounded the immiscibility of the PVC/PVAc pair. The computed values of δ also suggested miscibility for polymer pairs of unknown miscibility, namely PPE/PVC, PPE/PVAc, and PET/PSF. In recognizing the limitations of the solubility parameter approach (the omission of several thermodynamic contributions), these preliminary results are auspicious because they indicate a new route for estimating the miscibility of any polymeric material at a given temperature and pressure. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2909–2915, 2004 相似文献
119.
The structure, morphology, and isothermal and nonisothermal crystallization of isotactic polypropylene/low‐molecular‐mass hydrocarbon resin blends (iPP/HR) (up to 20% in weight of HR) have been studied, using optical and electron microscopy, wide‐ and small‐angle X‐ray and differential scanning calorimetry. New structures and morphologies can be activated, using appropriate preparation and crystallization conditions and blend composition. For every composition and crystallization condition, iPP crystallizes in α‐form, with a spherulitic morphology. The size of iPP spherulites increases with resin content, whereas the long period decreases. In the range of crystallization temperatures investigated, HR modifies the birefringence of iPP spherulites, favoring the formation of radial lamellae and changing the ratio between tangential and radial lamellae. Spherulitic radial growth rates, overall crystallization rates, and melting temperatures are strongly affected by resin, monotonically decreasing with resin content. This confirms miscibility in the melt between the two components of the blends. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3368–3379, 2004 相似文献
120.
Beeranahally H Doreswamy Madegowda Mahendra Hirihally C Devarajegowda Venkatesh B Devaru Sridhar M Anandalwar Javaregowda S Prasad 《Analytical sciences》2004,20(2):407-408
The title compound was extracted from a natural product and its structure was characterized by an X-ray diffraction method. It crystallizes in the tetragonal space group P41 with cell parameters a = 15.832(10)A, c = 11.622(10)A, Z = 4; the final residual factor is R1 = 0.0769. The structure has both intra and intermolecular hydrogen bonds. 相似文献